
AD—Ant 0148 GENERAL RESEARCH CORP SANTA BARBARA CALIF FIG 9/2
JAVS TECHNICAL REPORT. METHODOLOGY REPORT.tU)
APR 77 N B BROOKS. C GANNON F306 02—76 C—0233

UNCLA SSIFIED RADC—TR—77— 126~ yOL~ 3 Nt

‘ O F ’

-~ 048

Ii _
_ _

_ _
_ H

_ _

_j

~~~~~~

nLJ l
_ I!DI!~LLDEJOI

--



U I c ~ 28  ~ 2.5

II • 

~ ~: llII~2

I . I 
‘

~

~~L8

1.25 
~
f lfl i.4 ~i.o

V S()~ U N



~-~~ —77—l26 , Volume III (of three )

JAVS ~TC~~1I~~ L ~J~PQRT

~4ethc blo~~z Report

General Research Corporation

App r~’vt ~d fcr public release; distribution unlimited.

‘A D D  C

ROME AIR DEVELOPMENT CENTER3 Air Force Systems Command . 
-

Gr~(f iss Air Force Base , New York 13441
A 

— S .



This report contains a large percentage of machine—produced copy
which is not of the highest printing quali ty bu t because of economical
consideration, it was determined in the best interest of the government
that they be used in this publication .

This report has been reviewed by the RADC In~ormation Office (01)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general pub lic , including fore ign
nations.

This report has been reviewed and is approved for publications.

APPROVED : 
,..r2~

CZ4c%
~

’ _4~ ~
FRANK S. LANONICA
Project Engineer

APPROVED: /~344~
j  j

~
ROBERT D. KRUTZ, Co 1 onel , (JSAF
Chief , Information Sciences Division

FOR THE COMMANDER:

JOHN P. HUS S
3 Acting Chief , Plans Office

,~~ l t~ 
— 

coet~~us tSUTI 0Nf~V * * ~~~~~

¶~iS t.

Do not return this copy. Retain or destroy.



UN CLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (97,.n Oaf. EnI.r.d)

DAD? I~A(1IM IJTAYIAb.l Ar’ READ INSTRUCTIONS
~~ ~~~~~~~ I’ I ~~ ~~I 

~ BEFORE COMPLETING FORM
- 12 GOVT ACCESSION NO. 3. R E C I P I E N T S  CATALOG NUMBER

RADCjTR—77—126,’Volu~~~~Ii (of thr~e) 
__________________________

4. TITLE?~~JsU5mmr 5. TV PE OF REPORT B
Final Technical Repo~rt~.

JAVS TECHNICAL REPORT May ~ - Dec 76 ~
Methodology Report 6. PERFORMING ORG . ~~~PORT NUMB~~R

N/A
7 6. CONTRACT OR GRANT NUMBER(o)

N. B. Brooks F30602—76--C—0233 i. —-
C. Gannon

9. PERFORMING ORGANIZAT ION NAME AND ADDRESS t O. PROGRAM ELEMENT , PROJECT , TA S K
A R E A  6 WORK UNIT NUMBERS

General Research Corporation i.—
P. 0. Box 3587 ~~728F
Santa Barbara CA 93105 5550.0838

II. CONTROLLING OFFICE NAME AND ADDRESS %2 . REPORT DATE

Rome Air Development Center (ISIM) 
- 

April 1977
Griffiss AFB NY 13441 ~~~- NUMB EROFPAGES 1 -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

87 _‘
~~
j

14. MONITORING AGENCY NAME B ADDR ESS( II difl.,.nI ken, Cont,oltIn4 Office) IS . SECURITY CLA SS . (of cAt. ,.po,I~
Same

UNCLASSIFIED
IS.. DECLASS IFICATION ’ DOWNGRADING

N/A
SC HEOULE

IS. DISTRIBUTION STATEMENT (of fbi. R.po,f)

App roved fo r public re1ease~ distribution unlimited.

17. DISTRIBUTION STATEMENT (of IA. abaIr.ct •nI.,.d In Block 20. If ditf.,enf Iron, Report)

Same

lB. SUPPLEMENTARY NOTES

RADC Project Engineer:
Frank LaMonica (ISIM)

19. KEY WORDS (Continoe on r•v•r.e dde If flacIC*a?3~ ~,d jd.ntIfy by block comber)

Computer software
Software testing
Software verification
JAVS
Automated Verification System
ABSTRACT (ConIinue on ,eee,•e old. If n.ce.o.,y and IdentIfy by block n~nnber)

The JOVIAL Automated Verification System (JAyS) is a tool for analyzing
source programs written in the J3 dialect of the JOVIAL language . From the
user ’s viewpoint , JAVS consists of a sequence of processing steps which (1)
analyze his JOVIAL source text , (2) guide him in preparing test cases for
his programs , (3) analyze the results of tests executed by his programs , and
(4) automaticall y document his programs .

(cont ‘d)

DD 
~~~~~~ 

1473 EDITION OF I NOV 63 IS OBSOLETE UNCLASSIFIED
SECURITY C L A S S I F I C A T I O N OF THIS PAGE (N~..n Oar. Fn’e~ed)

_ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 --— S-~~——~~~~~~ - - —.-~~~~~

UNCLASSIFIED
SEC u R I T Y CLASSIFICATION OF THIS PAGE(N~i.n 0.1. Enfsr.d)

This report describes the application of a testing methodology utilizing an
Automated Verification System (AVS) such as JAVS. Sections of this report present
an overview of the testing methodology and the capabilities of JAVS and describe
actual testing experience with JAVS , the general role of an AVS in app ly ing the
testing methodology , practical techniques for particular test situations , and
expanded capabilities for advanced AVS Imp lelrentations .

UNCLASSIFIED

S F ’~,.cR~1Y C,.ASS rI ~ .‘~ C’. ‘)c YHI S PAGF’* ! , .n (’.,a t , ~ ... ’

-~~~~~~~-~~~

LIST OF JAVS REPORTS

• JAVS Technical Report: Vol. 1, User ’s Guide. This report is an intro-
duc tion to using JAVS in the testing process. Its primary purpose is to acquaint
the user with the innate potential of JAVS to aid in the program testing pro-
cess so that an efficient approach to program verification can be undertaken .
Only the basic principles by which JAVS provides this assistance are discussed .
These give the user a level of understanding necessary to see the utility of
the system. The material on JAVS processing in the report is presented in the
order normally followed by the beginning JAVS user . Adequate testing can be
achieved using JAVS macro commands and the job streams presented in this guide.
The Appendices include a summary of all JAVS commands and a description of JAVS
operation at RADC with both sample command sets and samp le job control state-
ments.

• JAVS Technical Re~port: Vol. 2, Reference Manual. This report describes
in detail JAVS processing and each of the JAVS commands. The Reference Manual
is intended to be used along with the User ’s Guide which contains the machine—
dependent information such as job .ontrol cardr and file allocation. Through-
out the Reference Manual, modules from a sample JOVIAL program are used in
the examples . Each JAVS command is explained in de tail , and a samp le of each
repor t produced by JAVS is included with the ~~propr iate command. The report

is organized into two major parts: one describing the Jr’S system and the
other containing the descr iption of each JAVS command in alphabetical order.
The Appendices include a complete listing of all error messages directly
produced by JAVS processing.

• JAVS Technical Report: Vol. 3, Methodology Report. This report describes
the methodology which underlies and is supported by JAVS. The methodology is
tailored to be largely independent of implementation and language. The dis-
cussion in the text is intended Lu be intuitive and demonstrative. Some
of the methodology is based upon the experience of using JAVS to test a large
information management system. A long—term growth path for automated verif i-.
cation systems that supports the methodology is described.

• JAVS Computer Program Documentation: Vol. 1, Sys tem Design and Imp lemen-
tation. This report contains a description of JAVS software design , the organi-
zation and contents of the JAVS data base, and a descrip tion of the software
for each JAVS component: its function , each of thc modules in the component ,
and the global data structures used by the component. The report is intended
primar ily as an informal reference for use in JAVS software maintenance as a
companion to the Software Analysis reports described below. Included in the
appendices are the templates for probe code inserted by instrumentation pro-
cessing for bo th structural and directive instrumentation and an alph.ihet :ical
].ist of all modules in the system (including system routines) with the formal
parameters and data type of each parameter.

JAVS Computer Program Documentation: Vol. 2, S o f t w a re Anal ysis . This
volume is a collection of computer o u t p u t produced by JAV S s t a n d a r d p r o c e s s i n g
steps. The source for each component of the JAyS software has been ona]y;~cd

i i i

to produce enhanced source listings of JAVS with indentation and control struc-
ture identification, inter—module dependence, all module invocations with formal
and actual parameters , module control structure, a cross reference of symbol
usage, tree report for each leading module, and report showing size of each
component. It is intended to be used with the System Design and Implementation
Manual for JAVS software maintenance. The Software Analysis reports, on file
at RADC, are an excellent example of the use of JAVS for computer software
documentation.

• JAVS Preprocessor for JOVIAL. This report, prepared for GRC by its sub-
contractor, System Development Corporation (SDC), describes the software for
the JAVS—2 component: its origin as the GEN1 part of the SAN—D ED Compiler ,
the modifications made in GENI to adapt the code for JAVS—2 , the JAVS—2 code
modules, and the data structures. It contains excerpts of other SOC reports
on the SAM—D ED JOVIAL Compiler System. The report reflects the status of the
software for JAVS—2 as delivered by SDC to CRC in September 1974. The de-
scription of JAVS—2 software contained in the System Design and Integration
report reflects the status of JAVS—2 as delivered to RADC by CRC in September
1975 and thereby supercedes the SDC report.

• JAVS Final Report. The final report for the project describes the im-
plementation and application of a methodology for systematically and comprehen—
sively testing computing software. The methodology utilizes the structure of
the software undergoing test as the basis for anlaysis by an automated verifi—
cation system (AVS). The report also evaluates JAVS as a tool for software
development and testing.

iv

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~.



~
__-.5 __ _

~
. —

CONTENT S

SECTION ____________________________________________________ PAGE

1 SUI~O~ARY 1-1

2 OVERVIEW OF THE METHODOLOGY 2-1

2.1 Issues in Program Testing 2—1

2.2 Single—Module Testing 2—3

2.3 System Testing 2—6

2.4 Automated Verification System Design 2—7

2.5 The Impact of the AVS—Based Methodology 2—8

2.6 Summary

3 OVERVIEW OF AVS CAPABILITIES 3—1

3.1 Capabilities of JAVS 3—1

3.2 Limitations of JAVS 3—2

3.3 Organization of JAVS 3—3

3.4 Summary 3—4

4 REV IEW OF JAVS TESTING EXPERIENCE 4—1

4.1 Acceptance Tests 4—2

4.2 Evaluation Tests 4—23

5 APPLICATION OF SYSTEMATIC TESTING METHODOLOGY 5-1

5.1 Role of the AVS 5—1

5.2 Practicing the Methodology 5—7

6 ADVANCED AVS CAPABILITIES 6-1

6.1 Current AVS Implementation 6—1

6.2 Future AVS Capabilities 6—2

APPENDIX A GLOSSARY OF AVS TERMINOLOGY A-l

REFERENCES R-l

v/v i

_ _  _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



-~ , —--- —

ILLUSTRATION S

2.1 Relation Between Testing and Validation 2—2

2.2 Diagram of Decision—to—Decision Path (DD—Path) 2—4

2.3 Iterative and Non—Iterative Flow Patterns 2—5

q3.l Overview of JAVS in the Testing Process 3—5

4.1 Single Test Case Summary Report of DD—Path Coverage 4—6

4.2 Unexercised OD—Paths 4—7

4.3 Module Listing for DECNAL 4—8

4.4 Module Listing for FLTOUT 4—10

4.5 DD—Path Definition Listing for DECHAL 4—12

4.6 Control Flow Picture for DECMAL 4—13

4.7 Iterative Reaching Set for DECMAL 4—13

4.8 Library Cross Reference 4—14

4.9 Module Invocation Space for DECMAL 4—15

4.10 Module Invocation Bands for DECMAL 4—15

4.11 Multiple Test Coverage Report 4—16

4.12 DD—Path Coverage for DECMAL 4—17

4.13 DD—Path Coverage for FLTOUT 4—19

5.1 Approaches to Achieving Quality Software 5—2

5.2 Unaided Software Analysis and Testing 5—3

5.3 Software Analysis and Testing Augmented by JAVS 5—4

5.4 Software Testing and Validation 5—5

5.5 Overview of System Testing Methodology 5—20

5.6 System Testing Methodology (Bottom—Up) 5—22

5.7 Tables Showing Interdependencies 5—24

vii 

-. ~~---
.--- ~~~~~~~~~~- --- ~~..- --...---~~~~~ 



~ 
-. —-~~~~~~~

-
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

EVALUA T ION

The purpose of this effort was to enhance the JOVIAL Automated
Verification System (JAyS) and to implement a systematic software
t es t ing program using the JAVS to assist in the tes t ing process.
Developed to aid in the tes t ing and ver i f i ca t ion of JOVIAL J3 programs ,
it provides the ability to increase the practical reliability of
software by increasing the achieved level of testing . As a result of
this effort , the JAVS was enhanced and successfully tuned f or operational
use. This report is the third of a series of three volumes which provide
excellent supporting documentation on its application and use.

• ~/
FRANK S. LANONICA
Project Engineer

viii

~ - --~ ---~ .-- , - -•-

~~

1 SUMMARY

At present , computer software is tested only according to its developers ’
intuitions, if it is tested at all. The reliability of software is at least
partially dependent on the thoroughness of its testing; increased testing
therefore contributes to increased reliability.

Simple computer programs can be comprehensively tested without difficulty
by inspection. However, when computer software becomes so complex that human
intuition is inadequate to deal with its subtleties , the testing must be based
on a systematic and rigorous methodology . One purpose of such a methodology
is to keep the cost of testing——in money and in time——to a tolerable level.

Under a previous contract ,
1

CRC developed and implemented a methodology
for testing computer software.2 It is designed to be largely independent of
implementation and programming language . The methodology incorporates an
Automated Verification System (AVS) which analyzes the s t r u c t u r e of the s o f t—
ware , in its source—text form.

The AVS consists of an integrated series of tools designed to:

• Measure the effectiveness of software test cases , both
individually and cumulatively

• Facilitate the construction of test data that will thoroughly
exercise the sof tware

• Analyze the requirements for retesting after modification
of the software

In that contract , an imp lementation of the methodology was developed for
programs written in the J3 dialect of the JOVIAL language .3 The resul t ing
AVS , JAVS (for JOVIAL Automated Verification System), is opera tional on bo th
the Honeywell Information Systems HIS 6180 at Rome Air Development Center
and the Control Data Corporation CDC 6400 at General Research Corporation .4’5

This report describes the app l i ca t ion of the tes t ing me thodol ogy for
systematically and comprehensively t es t ing computer sof tware . The techniques
described in the following sections were employed in the tes t ing conduc ted
during the previous contract and its present follow—on . The present contract6
has as its objectives :

• Evaluate the concept of automated tools to support t e s t ing in
general , and the present capabilities of JAVS in particular

• Accumulate experience in using automated tools

• Refine the methodology for testing with AVS assistance , and
develop desi gn goals fo r extended AVS c a p a b i l i t y to suppor t
the methodology

• Increase the confidence in operational progra ms throug h
sys temat ic t e s t ing using automated tools , and ga ther data
on the ac tua l (and potential) contribution of an AVS to the
t e s t ing process

• Document the r e su l t s of the t e s t s, and the ref ined met hodology
and projected AVS design

1—1

~~~~--- -~~~~~~~~~~- - ---~~~~~~~~~ .-



As part of the JAVS acceptance tests7 the f i r s t  contract used as soft-
ware test objects (1) a small , comple te engineering app lica tion program called
BLSTIC and (2) the software for JAVS itself , a large program with well—defined
s t ruc ture .  The test object for the current contract is the COMPOSE segment
of SAC ’s Force Management Information System (FM IS) .  Wi th  each of these test
objects , we have experienced the increased power that an AVS gives the tester
in achieving software test objectives. An AVS offers a totally new dimension
in sof tware engineering, not only in software testing but also as an invalu-
able assistant in development anc’ maintenance.

An important outcome of the test activities thus far is the enormous
value of high—quality, thorough, up— to—date , and accurate documentation of
the test objects which is automatically produced by the AVS as part of apply-
ing the methodology.

Although this report is largely self—contained , the reader is encouraged
to make use of Refs .  4 and 5 for  their extensive examples of AVS reports and
of Ref. 2 for the conceptual basis and detailed description of the methodology .
The emphasis here is upon the app lication of the tes t ing me thodology wi th
JAy S (Secs. 4 and 5) and forecast ing the capabilities needed in more powerful
automated test tools (Sec. 6). The sections in sequential order describe:

• An overview of the testing methodology (Sec. 2)

• An overview of JAVS capabilities (Sec . 3)

• An overview of the testing experience (Sec. 4)

• Application of the testing methodology (Sec. 5)

• Advanced AVS capabilities (Sec. 6)

Section 2 is largely taken from the Final Report of the first contract.
8 

It
is included here to make this report self—contained . Section 3 presents a
high—level overview of the capabilities of JAVS ; detailed descriptions of
these capabi l i t ies  are contained in Refs .  4 and 5. Section 4 reviews the
tes t ing  experience wi th  JAVS in terms of the techniques used in applying the
me t hodology to three specif ic  programs . The rema ining sect ions  genera l ize
the app l icat ion of the methodology and ou t l ine  expanded capabi l i t ies  fo r
advanced AVS implementations.

Other repor ts  de ta i l ing  the methodology,  the capabilities of JAyS, and
test ing experience are included in Re f s .  2 , 4 , 5 , 7 , 8 , and 9. Other  

10imp lementat ions of the testing methodology are now operat ional  for  FORTRA N ,
JOVIAL J3B ,11 and Pascal. 12

1—2 

.—~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



2 OVERVIEW OF THE METHODOLOGY

This section presents an overview of the methodology as developed under
the previous contract.

2.1 ISSUES IN PROGRAM TESTING

In many app lic .’~tions which involve a digital computer , the d i f f i c ult
problem of developing the sof tware port ions of the system has been of in-
creasing concern to system managers. This is in sharp contrast to computer
hardware reliability problems which can be attacked with conventional
eng ineering techniques.  For all practical purposes , computer hardware can
be made as reliable as necessary through multip le redundancy and other tech-
niques. The situation is very d if f e r e n t for  compu ter sof tware , particularly
in critical applications. To date there have been no truly effec tive ways to
make software a low—risk element of a system implementation , regardless of the
effort applied .

2.1.1 Approaches to Software Quality

The computer science community recognizes the software reliability prob-
lem and is developing systematic approaches to increase software reliability
and , if possible, simultaneously reduce its overall cost.

Among the current “synthesis” approaches are the following:

• Structured Programming disciplines , which seek to minimize the
comp lexity of software (and thereby enhance its overall quality
and reliability) by constraining the control structures of the
programming language used .

• Chief Programmer Teams, a managemen t techn ique which assigns a
talented person (the Chief Programmer) sole responsibility for
all aspects of a software system , includ ing its ultimate
ef fec t iveness  and r e l i ab i l i t y .

• Technologically sophisticated software design methodolog ies such
as “ top down ” and “bottom up ” design and imp lementation disci-
p lines , which attempt to systematize the sof tware  p roduc t ion
process and thereby enhance program q u a l i t y .

These “syn thesis ” techniques generally try to increase software quality by
keeping software problems from happening in the first place.

The a l t e rna t ive  of dealing with software which has alread y been devel-
oped (or is in the final stages of development) involves two primary “analysis”
approaches:

• Program proofs , which demonstrate the correctness of programs by
trea ting them as if they were mathema t ical theorems . A mechani-
cal theorem prover is often used to assist in the proof con-
struction.

• Automated Verification Sys r~~ms (AVS ’s ) ,  which attempt to increase
the practIcal reliability of software by raising the execution
coverage of program pa ths.

2—1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
- •-,.. - . -


~~~~~~~~~~~~~~~~~ ~~~~~ ,- ~~~~~~~~~~~~~~~~~~~~~~ .~~ _~~~~~~~~~~ - . .~~~~

2.1.2 Automatable Methodology

The methodology implemented in JAVS addresses only the software testing
area . The need to assure a sound theoret ical  basis for  a systematic general
testing methodology is clear. It is equally impor tan t to develop a me thodology
tha t can be au toma ted , because the combinatorial difficulties encountered in
testing large—scale software systems can be so great that any purely manual
systematic testing methodology would be of questionable value. Only methodo-
logies which can be supported by an AVS are considered here; the analytical
mechanisms employed are those which (by design) mee t the dual req uirements of
general i ty and autoina tabil i ty .

2 . 1 . 3  The Meaning of “Ver i f ica t ion”

The diagram in Fig. 2.1 shows the relationships between a software Sys-
tem Func tional Spec ifica tion , the sof tware , and the process by which an AVS
seeks to inver t, or “val ida te ,” the software implementation phase , as shown
by a dashed line. In Phase I, the embod ied sof tware is analyzed by the AVS
to produce a set of “struc turally indicated” test case patterns. In Phase II,
struc tural indica tions of appr opr iate test cases are used to select ac tual
test case data . The aggregate of test case data can be used to exercise the
sof tware  sys tem——tha t  is , to assure that all portions of the software system
have been exercised against some acceptance criteria .

PHAS E III :

TEST I ‘0
SYSTEM ANALYSIS FUNCTIONAL
FUNCTIONAL j  TESTCASE
SPECIFICATIONS SET

) INTENDE D
FUNCTION

I (PROBLEM
SOFTWARE / DEPENDENT)

I IMPLEMENTATION PHASE II:
/‘ c~ TEST DATA

VAL I DATIO N ’ ~~~ ~~ 
SELECTION

REALIZED
I FUNCTIO N

STRUCTURAL (PROBLEM
I SOFTWARE . ~ TESTCASE INDEPENDENT)

PHASE I. SET
__________________ 

TE ST CASE 
__________________I D E N T I F I C A T I O N

SYNTHESIS OF ANALYSIS
SOFT WARE OF SOFTWARE

Figure 2.1. Relation Between Testing and Validat ion

2—2 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


_
~~~~~~~~~ , • ~~~ •-•~~~~~-— ~~~~~~~~~~~~~ 

_ _

The test case set can also be used in another important  way.  In Phase
III the relationship be tween the set of funct ional  tests  and the Funct ional
Specification is used as an indicator of the veracity of the original imple-
mentation activity. If the functional test case set does not match one—for—
one with the requirements stated in the Functional Specification , then one
must conclude that either the implemen tation is imperfec t , or the spec i f i ca t ion
is imperfec t (assuming , of course , that the functional test case set has been
correc tly generated). The absence of a mismatch leads to a general increase
in the program testers’ belief in the software as a genuine implementation of
the requirements stated in the functional specification .

2.1.4 Limitations of Testing

Al though program test ing is a powerful tool in this restricted sense,
the current state—of—the—art will not support a fully automatable analys is of
the correspondence between sets of test cases and the functional specifications
of software (Phase III of the process just d e f i n e d ) .  Instead , the role of the
AVS is to assure that the testing verification meets some criterion of com-
prehensiveness. Testing verification is the primary ou tcome of opera tion of
the AVS and is an indirect indicator of the degree to which the real objective
(matching tests with functional behavior) is actually met.

Comprehensive exercise of a software system does not guarantee that it
is error—free . However , practical experience indicates that thorough exerc ise
will locate a very high proportion of errors. Hence , the use of tes t ing
verification as an approximation to full program verif ica t ion seems to be
reasonable and prac tical.

2.2 SINGLE—MODULE TESTING

Single—module testing is oriented toward a par ticular , well—def ined
testing goal , which is based on the internal properties of a program ’s con-
trol structure : to assure that each statement in the program has been
exercised at least once , and tha t each decis ion in the program has been
exercised a t leas t once to each possible outcome (but not necessarily in
every possible combination).

The smallest executable piece of a program is the sequence of activities
the program performs in using the outcome of a decision to determine the pro—
gram ’s f u t u r e  course of act ion.  We call  th is  a “decis ion—to—decis ion pa th ,”
or DD—path for  shor t .  A DD—path is diagrammed in Fi g. 2 . 2 .

If every DD—path in a program has been exercised at least once by a test
case set for  tha t program , then both of the testing criteria stated above have
been me t .

2.2.1 The Iteration Structure

During testing (after some initial set of t e s t s) ,  the  s i tua t ion  is as
follows. Some as—yet—untested DD—path is selected as the subject of the
ques t ion “What means can he used to construct new test case data which will
cause this  DD—path to be executed?”

2—3

k-- .  s 
_ _  A



FROM PREVIOUS
DD-PATH

PREDICAT E
OUTCOME

ALTERNATIVE ALTERNATIVE
OUTCOME OUTCOME

EXECUTE
SEQUENCE DD- ATH

DECISION
STATEME NTS

DECISION
STATEMENT :
EVALUATE
PREDICATE

SELECT
PREDICATE
OUTCOME

Figure 2.2. Diagram of Decision—to—Decision Path (DD—Path)

The answer to this question is provided in part by the iteration structure
of a module. Briefly, the iteration structure of the module is a tree of in-
terdependent sets of DD—paths arranged in such a way that it is easy and
straightforward to identify potential program flows. The pattern needed to
deal with any particular program flow i s as shown in Fig. 2.3. The diagram
shows a single non—iterative flow pattern modified by a single iterative flow
pattern. The non—iterative flow consists of DD—paths with the labels Al,A2,
A3,A4: the iteration (in this case, a simple cycle) consists of DD—paths Bi,
B2,B3,B4.

This pattern is a prototype of all possible patterns of program flow
because it incorporates the two necessary “types” of program execution : (1)
selec tion of fu ture program act ion and (2) repe tition (iteration) of previously
executed actions. For any computer program , and for a particular fixed set of
program “input data,” the actual flow pattern which results can be represented
as a collec tion of such patterns. Although the actual pattern for a large
program may be very complex , it is always composed only of selection and
iteration operations.

Single—module testing is the process of identifying a particular pattern
of program flow , and then constructing input data for the module which makes
that program flow pattern actually happen . A test consists of a single in—
vocation of a module , operating in a data environment which is sufficient to
satisfy the data—input needs for that invocation . The set of data needed for
a test is called the test case dataset.

2—4 

—~~~~.- - -  ~~~~~~~
.
~~~~~~~~~~~~~~~~~~~~~~ —•—.-- - -- ...

~~~~~~~~~~~ ~~~
.-,



MODULE ENTRY ..,

8

2 
84

83
A 2 7

B2
~

6
A 3

A 4

5 MODULE EXIT

Figure 2.3. Iterative and Non—Iterative Flow Patterns

2.2.2 Reaching Set

The basis for single—module test case data generation is formed from the
structural properties of the program as represented by sequences of DD—paths.
The set of all DD—paths that connect together to form paths from one designated
DD—path to another is called the reaching set. Extracting a particular subset
of program text to be analyzed for specific data value settings is accomplished
with the reaching set which may or may not include iteration flow patterns .
Presumably the DD—path which is the target for a new test case is one which
has not been exercised by any of the existing test cases. In the case illus-
trated (see Fig. 2.3), the members of the DD—path reaching sequence A1-*’A2-~B1-”
82 constitute the reaching set which makes the program execute DD—path B3
from the module entry point. Furthermore it is the 

~ Ji 
reaching sequence of

DD—paths in the reaching set. For more complex programs , the reaching set
may include a number of DD—path sequences. Certain of the DD—paths in the
reaching set may be essential in that they must be executed in order to reach
the designated DD—path. For the example in Fig. 2.3, all the DD—paths i~ the
reaching set (A1,A2,81,B2) are essential to reach B3 from the module entry.

2.2.3 Test Case Data Generation

The test case dataset which forces execution of a particular DD—path can
be derived by examining the program text corresponding to a reach sequence
which employs the DD—path. While this analysis process is relatively straight-
forward manually, it is not completely automatable with state—of—the—art tech—
niques.

2—5 

~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .


r _

~~~~~~~

. .-  . -

~~~~~~~~~

2.2.4 Selecting_ the Testing Target

In a typ ical situation there are several untested DD—paths that need the
program tester ’s attention. The testing methodology does not explicitl y decide
which of those to concentrate on , but it does provide a program nesting level
to help rationalize the selection process. The untested DD—path chosen as the
focus of testing is called the testing target.

If all DD—path attributes are otherwise equal , the program tester should
choose a target DD—path which is as “high up ” in the iteration structure as
possible and at the same time as “far down into the code” as possible. By
concentrating on a difficult test case, the tester will tend to maximize the
amount of collateral testing . Executing a test case designed for some particu-
lar DD—path often causes a large number of other DD—paths also to be executed .
This phenomenon can reduce the overall effort needed to achieve the 100%

F
testing coverage desired .

2.3 SYSTEM TESTING

The techniques used for single—module testing are employed systemati-
cally in achieving full system testing . A large software system is typically
composed of subsystems, components , and single modules. Software system test-
ing is performed in terms of the dynamic in~ocation structure (dynamic
organization) of the system , i.e., the tree of intermodule dependencies in
which the execution of the software~ system occurs. Choosing the particular
module to which the current testing effort should be directed is based on the
dynamic organization , but this choice can also be made by analyzing the single—
module coverages already achieved .

2.3.1 System Testing Strategies

Two possible system testing strategies are (1) bottom—up testing and
(2) top—down testing. The bottom—up testing strategy first tests single
modules at the bottom of the invocation chains , followed by higher—up elements •1
of the software system in their turn. This bottom—up strategy tends to
maximize the ind ividually achievable levels of testing at the possible expense
of significant problems in constructing the testing environment.

The top—down testing strategy concentrates first on the “topmost ”
modules of the software system and operates on successively deeper modules
within the invocation hierarchy. This method of system testing is l ikely to
produce a large amount of collateral testing . It has the disadvantage ,
however , that it may be difficult to construct new test case data when the
testing targe t is far from the apex of the invocation hierarchy . This may
result from ~ program ’s protection of data used by lower—level modules , often
a nor::~al and desirable attribute of large—scale software systems.

F

2 . 3 . 2 Coverage and Target Se lec t ion

A testing coverage measure consolidates individua l module testing
coverage s in to a value app l i cab le to an entire software system . One simple

2-6

.. . — -
~ _~ -~ -- ~~~~~~~~~~~~~~~

measure is to consider the software system to be tested as much as its least—
tested module, expressed in terms of the exercised percentage of DD—paths.
Other measures, which take module and system complexity into account , are also
possible.

The testing strategy can use explicit or implicit rules to select the
appropriate target for continuing testing efforts. With the simple measure
described above the next target is always either (1) the least tested module
at the current level within the hierarchy (top down), or (2) the least tested
module within the subset of modules currently under analysis or invoked by
those modules (bottom up).

2.4 AUTOMATED VERIFICATION SYSTEM DESIGN

An Automated Verification System (AVS) supports the testing methodology
by providing various support facilities. The AVS database contains all
relevant information about the source text and the structure of the software
being analyzed . This information is generated and stored once f or each module .

2.4.1 Instrumentation

Individual modules whose source text and related structural information
have already been added to the AVS database can be instrumented before
execution in a testing environment. The instrumentation techniques are
designed to (1) produce program texts which are logically equivalent to the
originals, and (2) provide low—overhead invocations to a special instrumenta-
tion module which intercepts the program’s flow of control as it passes
through each DD—path.

2.4.2 Data Collection and Reduction

During tests, the program performs instrumentation invocations that
carry with them the name of the module and the number of the DD—path currently
being executed . The AVS data collection and reduction facility records
these invocations and produces reports which indicate the testing coverage
attained for each module .

2.4.3 Test Case Data Generation Assistance

The test case generation assistance facility of the AVS is used when
DD—paths within a module are found not to have been executed . Under user—
specified commands , the AVS uses the information about the DD—path sequences
to generate appropr ia te reaching sets. The user analyzes the program source
text to select the desired DU—path sequence in order to determine appropriate
test case data .

2.4.4 Retesting Guidance

In addition to its role in software testing , the AVS provides rudi—
mentary answers to two questions important in maintaining software :

2—7

~

_

~

- --_

~

_~

1. If a particular module has been changed , what other modules will
have to be retested? Candidates for retesting include modules
which are invoked by the changed module , either directl y or
indirectly, and modules which use the outputs of the changed
module.

2. If a series of changes has been made throughout a software system ,
which modules will have to be retested to restore the system ’s
level of t e s t ing ? Candidates for retesting are the amalgamated
set of modules affected by the changes . The members of this set
depend on how the level of testing is defined .

The first question is answered by having the AVS refer to the invocation
structure of the software system it has analyzed . The second question is
answered by using the instrumentation facility of the AVS : Those modules
which have less than the required level of exercise must be re—examined in
detail.

2.5 THE IMPACT OF THE AVS-BASED METHODOLOGY

It is difficult to assess the exact impac t of widespread use of AVS
testing technology because there is only a limited experience basis from
which estimates of decreased life—cycle software costs could be made. Based
on our initial experience, and admittedly our intuition, we can expect the AVS
testing technology to:

• Decrease the overall cost of comprehensively testing software or ,
equivalently, increase f-he level of testing coverage achieved for
the same cost

• Identify programming constructs which are difficult to handle
from a testing point of view and eventually eliminate their use
in critical software systems

• Assure that software systems subjected to the AVS—based testing
methodology will have a significantl y decreased likelihood of
failure in actual use , particularl y if the software failures
could result fr~m lack of comprehensive testing

• Provide a strong technological basis for continued development
of the methodologies and the tools which support them .

In the long run , the benefits of AVS technology will occur through (1) in-
creased understand ing of the general problem of software testing , and (2)
development of better automated tools.

2.6 SUMMARY

The main points made in this section are the following:

• Among a variety of approaches to improv ing software quality,
systematic program testing offers near—term benefits not
avai lable w i t h o t h e r t e c h n i q u e s .

2—8

L . -,~~~~ . — -~~~~~~ - .-—~~~~~
- _

~~
-.- . .

~~~



• The most difficult problem in testing is the construction of test
case data which exercises previously unexercised parts of programs .

• Detailed analysis of a program ’s control structure can be used to
construct test case data.

• The methodology for single—module testing can be extended to sys-
tem (multi—module) testing .

• The simplest measures of testing coverage , if achieved , have a
positive effect on installed software system quality.

• Systematic software testing can be supported by the facilities
of an Automated Verification System (AVS).

• Systematizing the program testing process can reduce software
quality enhancement costs appreciably.

These topics are explored in depth in Ref. 2, Methodology for Commre—
hensive Software Testing.

2-9 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— — -~~~~~~~~~~~~--- - _ ,-- ~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_

~~
-- . -

~~~
.
~~~~~~~~

-
~~~~

- -

3 OVERVIEW OF AVS CAPABILITIES

This section is an overview of the capabilities provided by JAVS , an
AVS implementation for programs written in JOVIAL/J3. These capabilities
typify those implemented for other programming languages such as FORTRAN1°
and PASCAL.12

JAVS was developed as a tool to aid JOVIAL software developers and
testers in determining the extent to which their programs have been tested
and to assist in deriving additional test cases to verify the software. Up
to now, testing has been without an orderly approach and without accurate
means to determine exactly what portions of code have been exercised . JAVS
is an automated tool for measuring the effectiveness of test data in terms of
program structure , and this report provides a testing approach to be used
with JAyS.

3.1 CAPABILITIES OF JAVS

JAyS will analyze as many as 250 invokable modules and an unlimited
number of JOVIAL statements in a single processing job. A module is a
JOVIAL main program , CLOSE, or PROC . A START—TERN sequence is a unit of
source text , containing one or more modules , which is separately compilable
(for the JOCIT JOVIAL compiler). Programs containing more than 250 modules
must be partitioned into “components ,” which are groups of START—TERN
sequences. If partitioning a program is necessary , functionall y similar
START—TERM sequences should be kept in the same component for JAV S processing .

The role of JAVS , as a testing tool , is to assure that the software
has achieved a measurable level of exercise. JAVS provides execution cover-
age reports showing which modules , DD—paths , and statements have been
exercised . When test cases are input which achieve a high level of DD—path
coverage and which match the requirements stated in a func tional specification ,
the tester can be assured of comprehensive verification.

The dynamic behavior of the program can be studied by requesting JAVS
tracing reports. These traces show the invocations and returns of all modules
executed during the test. At user option , the trac ing can be performed at
the DD—path level to determine the dynamic behavior of the program while it
is processing the data. In addition , the user can trace “important ” events ,
such as overlay link load ing, by invoking one of the JAVS data collection
routines.

Single—module testing is oriented toward exercising all DD—paths within
the module. The basis for single—module test case data generation is formed
from the reaching set (see Sec . 2.2.2). When a testing target DD—path (ot
set of targets) has been identified from the coverage reports , the user can
get assistance from JAVS In de te rmin ing  the reach ing  ~~i t to the targ et.
Armed with the “reaching set ” report , the user can spot key vari ab le s whose

values affect the flow through the program path and io~~~t e i1 ~ instances of the
variables in the system—wide cross reference.

3—1

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~.“ --- -— 



—~ - - --. - -- -_- _ - ,
~~~~~~-—Th-~~

_ ,
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

JAVS supports top—down and bottom—up system testing strateg ies by pro-
ducing repor ts which show the modules ’ interaction in terms of invocation
description and calling trees. JAVS provides matrices showing interaction
of modules within the system examined by JAVS and invocations of modules
external to the system.

JAYS uses a data base to store information about the test program . The
availability and management of this information form the basis for a variety
of services , in addition to the primary task of testing assistance. Computer
program documentation , deb ugg ing through JAYS computation directives , and
reports useful for code optimization are the major side benefits of JAyS.

Computer documentation requirements for the Air Force typ ically specify
flow charts and lists of program variables and constants. In the JAVS develop-
ment and implementation contracts , these requirements were rep laced by
specif ying certain JAVS reports; i.e., self—documentation. It was found that
the module listings (enhanced by indentation and identification of decision
points), module control flow pictures , module invocation reports (showing
formal and actual parameter lists), module interdependence reports , and a
cross reference report for each JAVS component are more meaningful documenta-
tion and are generated automatically by JAyS.

Software development can be assisted by using JAYS to document and test
the system as it is built. To aid in data flow analysis and bound s checking ,
JAVS offers computation directives. The direc t ives are a special form of
JOVIAL comment , recognized by JAVS and expanded into executable code (using
the JOVIAL monitor statement) during the instrumentation phase. The user
can check logic expressions wi th  an ASSERT d i r e c t i v e , check boundaries of
selec ted variables with an EXPECT directive , and turn on and off the standard
mon itor tracing with TRACE and OFFTRACE directives.

Code optimization is aid d by the post—test reports which show the
number of t imes each statement is executed and t l~e e x e c u t i o n  time (in c e n t r a l
processor milliseconds) spent in the modules. Modules which are never called
and should be removed are listed in another JAyS report.

3.2 LIMITATIO~JS OF JAYS

Testing coverage results indicate what parts of the program were
executed . I t  is up to the user  to d e t e r m i n e  if  the  program ’ s o u t p u t  is
r ea sonab le .  One of t he  .JAVS p o s t — t e s t  ana ly s i s  r e p o r t s  lists the execution
coverage du r ing  t h e  test run in terms of the percentage of decision outways
taken. A good standard for t~ ie l evel of testing of a program is to exercise
every dec is ion  ou tway  ( t ha t  is every DD—path) at least once. This level of
testing is more ri gorous than simply testing every program statement at least
once. However , it should he emphasized that certain combinations of DD—paths
may cause errors which are not detected in merely executing each outva v one
t ime .

3-2

I 
~~~~~~~~~~~~~~~~ -.-~~~~~~~~~~~~~~ - ---- “.~~~~~~~~~~~~~~~ -—



~~~~~ -.—— . ,- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~
-------- — -- - -- - . -

3.3 ORGANIZATION OF JAVS

JAVS reads the user ’s JOVIAL program as data and performs syntactical ,
struc tural , and instrumentation analyses on the source code. .JAVS communi-
cates with the user through a command language and utilizes a data base to
store the information about the program. The user is provided with an
instrumented file of the selected program modules with which the user supplies
test data for execution. The execution results are written to a file for use
by JAVS ’s post—test analyzer which issues execution tracing and coverage
reports.

Six func tional processes , in addition to execution with test data ,
make up the substance of software validation provided by JAyS . The organi-
zation of JAVS is defined by these six tasks. To reduce the burden of the
user, JAVS exists as an overlay program at RADC with a macro command
language supplementing a large, versatile standard command language . The
processing steps and their basic functions are listed below:

BASIC, Source Text Analysis: Source text input , lexical analysis ,
and initial source library creation

STRUCTURAL, Structural Analysis: Structural analysis and execution
path identification; library update with structure and path information

INSTRUMENT, Module Instrumentation: Program instrumentation for path
coverage analysis and program performance directed by user; library
update with probe test instrumentation

ASSIST, Module Testing Assistance and Segment Analysis: Testing
assistance for improved program coverage

DEPENDENCE, Retesting Guidance and Analysis: Retes t ing requirements
analysis for  changed modules

Test Execution: Execution of ins t rumented code and analysis of
direc ted program performance

ANALYZER, Test Effectiveness Measurement: Detailed analys is of program
path coverage ; execution traces and summary s t a t i s t i c s

These steps need not be performed in the above order . Other orders may be
preferable at times.

Table 3.1 shows the relationship between the macro command , standard
command , and processing task.

An overview of how JAVS is used in the testing process is shown in
Fig. 3.1. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :i_ J


TABLE 3.1

RELATIONSHIP BETWEEN COMMANDS AND TASKS

Macro Command Standard Command
Keyword Keyword Task

BUILD LIBRARY BASIC Syntax analysis
STRUCTURAL Structural analysis

PROBE INSTRUMENT Structural and compu-
tation instrumentation

DOCUMENT ASSIST Module and intermodule
PRINT reports
DEPENDENCE

TEST ANALYZER Pos t—tes t coverage and
trace analysis

3.4 SUMMARY

The main points of this section are the following :

• JAVS offers immediate benefits in systematically testing , docu-
menting , and maintaining JOVIAL software.

• JAVS offers assistance in retesting software , but test case
generation and functional analysis of the program ’s output
are primarily tasks of the tester.

• The processes accomplished by JAVS are: syntax and structural
analyses, instrumentation , retesting assistance, and module
interdependence and post—test analyses.

• The user interacts with JAVS via a command language .

3—4

~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - - -—-- . -



- - .
~~~~~~~~~~~~~ - .-- .- . - - -“-—-- ~~-

.

U.’~~ JovrAL~~~
f
~

— JOVIAL source code is input for processing and —

analysis. A special form of cosunent (optional)SOURCE inserted by the user directs JAVS processing for
program performance analysis.

I ANALYSIS. gr~~h of the control structure.
I SOURCE TEXT JAVS analyzes the code and generates a directed

BUILD I STRUCTURAL The possible flows through the program are
LIBRARY ANALYSIS determined . All pertinent data is stored in a

_________ _________ data base for later use. Additional or

~~~~~

O

~~~~

_

changed source code causes an existing data
base to be updated.

PROBE MODULE JAVS automatically inserts software probes

INSTRUM into the source code to intercept and record
program flow during execution. A second type
of instrumentation is used to record statistics
on program performance according to directives
inserted by the user in the source.

rM0DULE TESTING ~~~~~~
— JAVS provides a variety of services which assist

DOCUMENT I ASSISTANCE AN1~ in the establishing of a continuing testing strat—

—u .-’ SEGMENT ANALYSIS . egy both at the detailed level within a module and

RETESTING GUIDANCE at the module interdependence level. Test cases

AND ANALYSIS are constructed by the user. Reports can be used
as program documentation.

PROGRAM results as well as outputs from the instrumen—
I TEST EXECUTION ,

~~~~~~~ 

Program execution provides normal computational

ta t i on .  Structural flow output is recorded for
[__PERFORMANCE later post—test analysis by JAVS . User—directed

program performance output is interspersed with
normal program output.

JAVS includes detailed post—test analysisI TESTING
faci l i t ies which provide measures of tes t ing
thoroughness , both individuall y and cumula—MEASUREMENT
tively for a set of test cases.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The results are examined by the user to determine
NO TEST GOALS

IEVED if test goals have been met and testing is
ACH 

YES
completed.

Figure 3.1. Overview of JAVS in the Testing Process

3—5



r 

- -  . - 

-

~~

4 REVIEW OF JAVS TESTING EXPERIENCE

To date , two formal test  ac t iv i t i e s  which illustrate aspects of the
testing methodology have been conducted using JAyS . These test activities
are the JAVS software acceptance tests (part of the initial contract) and
the JAVS evaluation tests (part of the current contract). Detailed descrip-
tions of these tests and the resu]ts appear in Ref s. 7, 9, and 13.

The acceptance tests were conducted using as software test objects the
following:

• TESTALL. Implementation and installation tests specifically
designed to stress functional features of individual JAVS
components

• BLSTIC. A representative JOVIAL application program

• JAyS software itself

rhe evaluation tests used the COMPOSE component of SAC ’s Force Management
Information System (FMIS). For both series of tests, the test objects range
in size from small to large (e.g., BLSTIC is 366 statements and COMPOSE is
38,734 statements excluding comments).

The goals of the acceptance tests were to:

1. Demonstrate standard usage of JAVS in an operational environment
2. Execute 85% of JAVS source code

The goals of the evaluation tests were to:

1. Identify both strong and weak areas of JAVS when used to process
large software systems.

2. Verify that all portions of JAVS are operating properly and that
current documentation is accurate. Deficienc ies found in JAVS
during the testing process were to be corrected if the resources
required are within the limits of the effort.

3. Identify and recommend areas of JAVS which could be subject to
future enhanc ement.

4. Document the results of the testing process for future reference
and study.

5. Establish recommended procedures for using JAVS tc test and verify
large software systems .

As a secondary benefit , portions of the FMIS software were tested and docu-
mented .

The remainder of this section discusses the application of the testing
methodology to each test activity.

4—1 

:: .~~ :.::~T .~~ 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4.1 ACCEPTANCE TESTS

The approach taken in JAVS acceptance tests was to group the tests into
functional , system_wid e,* and self—test categories. Collaleral testing was
used whenever possible to m inimize the number of tests within each category.
Although only the system—wide and s e l f—tes t categories are per t inent to the
application of the methodology , some of the JAVS func tional testing was
sa t is f ied by the system—wide tests and vice versa .

TESTALL , the JOVIAL program used as data for JAVS for the functional
tests , consists of three START—TERN sequences——a COMPOOL and two ma in pro-
grams——and a number of procedures and CLOSEs. It is not an application
program and has no other purpose than to exercise JAyS .

For the system—wide testing , an engineering application program ,
supp lied by RADC , called BLSTIC was used . It contains a main program and
several in ternal procedures . As part of the acceptance tests , a typ ica l
app lication of JAVS to program testing was posed as a problem to solve :
use JAVS on BLSTIC to obtain fu l l DD—path coverage and , using JAVS , explain
all unreachable source code in the program.

For the first Test Execution , test data supplied with BLSTIC was used .
Subsequent executions used data generated with the assistance of JAVS re—
test ing gu idance.

Two files were used as data for the JAVS self—tests: TESTALL was
used on the e n t i r e JAVS system , and TSTMOR was used on several large mod ules
in the JAVS—2 component , to achieve the required 85% statement coverage .
TSTMOR is TESTALL plus one more START—TERN sequence , conta in ing many
“pecul iar” JOVIAL statements to exercise some of the lesser—known features
of the language which JAVS—2 seeks during its source text analysis.

To demons t ra te cover age of JAVS sof tware , a technique (self—test) of
using JAVS to analyze its own software as a test object was adopted . JAVS
consists of twelve major components , each of which has its own COMPOOL and
a number of executable nodules; several components have nearly 100 mod ules
apiece. Since the JAVS software is sizable (approximately 30,000 statements),
the approach to testing was to test each component separately, using as the
dat a for Test Execution the TESTALL source code.

4.1.1 Test Object BLSTIC

The testing of BLSTIC demonstrated the capabilities of JAyS as a testing
tool on an exis t ing engineer ing application program. Althoug h BLST1C is
n e i t h e r la rge nor comp lex , it was w e l l — s u i t e d fo r a demonstra tion: its sour~ e
tex t was of a manageable size , initial test data was available , the program
had not been prev iously analyzed by JAyS , and the tester had no prior knowled ge
of the program .

* In this context system—wide tests mean the applic ation of JAVS to a comp lete
program for the purposes of comprehens ively testing that program .

4—2

~~~~~~~~~ — - --~~~~~~~~-~~~~~~~ - - .-- ---- ,-. . - .  
~~~~

-- -- ,

Since one purpose of the test was to d emonst ra te all JAVS func t ions ,
all the JAVS processing steps were executed for BLSTIC and every applicable
JAVS command was used . When all JAVS functions are executed , the volume and
variety of reports produced is large; under more normal conditions a tester
needs much less than the complete set to meet particular test objectives .
The properties of the program being tested (e.g., data organization ,
modularity, complexity of control structure , test data) as well as knowledge
about the program have some bearing on the analyst ’s testing strategy arid
choice of JAVS reports.

Starting the Test. The initial step in testing BLSTIC was to process
it through BASIC, STRUCTURAL, INSTRUMENT, Test Execution , and ANALYZER , using
as test data the single test case supplied by RADC . ASSIST and DEPENDENCE
reports were also generated .

Selecting a Target Module. The SUMMARY and NOT}IIT coverage reports
5

from ANALYZER were examined to identify modules with poor coverage . The
summary report (Fig. 4.1’) shows that the two modules with the most DD—paths
(DECMAL and FLTOUT) achieved the lowest percentage coverage with the single
test case. One approach , which often maximizes collateral testing and
minimizes the analyst ’s time in deriving new test cases, is to concentrate
on the largest modules with the poorest coverage . In this instance , DECMA L
and FLTOUT have almost the same number of DD—paths (Fig. 4.1) and achieved
about the same coverage (Fig. 4.2). DECMAL was selected as the testing
target , because of the deep control nesting levels of its unexercised DD—
paths. This is determined by comparing the list of unexercised paths to
the control—structure nesting level shown on one of several reports: the
module listing (Figs. 4.3 and 4.4), the DD—path definition listing (Fig. 4.5),
or the DD—path picture report (Fig. 4.6).

Selecting a Target DD—Path. Having selected a target module , the next
step is to select one or more target DD—paths which have not yet been
executed . Testing a DD—path which is on a high iterat ion level or deep in
the control nesting structure results in good collateral testing coverage.
Figure 4.2 listed the DD—paths not executed during the first test case. In
the retesting target module DECMAL , the list begins with 2 , 4, 5, 6, 7....
The DD—path definition report (Fig. 4.5) shows DD—path 6 as being nested at
the fifth control level . Thus, if DD—path 6 is executed , so are pa ths 2
and 4.

Preparing a New Test. A display of the iterative reaching set for
DD—pa th 6 (Fig. 4.7) shows the set of executable statements which may be
execu ted in order to reach the target DD—path. At this point , the testing
analyst knows what statements lead up to the untested DD—path , but it may
not be obvious what input data changes to make . Backtracking the statements
in the reaching set shows that “I” must be less than 11, one byte of “ARG”
must be a blank, 0(20) , and the byte of “ARG” before the blank must be a
decimal point , 0(33). Statement 18 states tha t ARG = INPUT1, so a new test
case for the single module would be to supp ly an appropriate value for
INPUT1 to module DECMAL (for example “f ive, dec imal point , blank”) and
execute the single module with a dummy main program .

4—3

System—wide t es t ing , however , requires the analyst to test the e n t i r e
system at once , or by components which are in te r re la ted . JAVS o f f e r s assis-
tance in tracking down which of the input parameters to change fo r a new test
case. Having tracked INPUT1 to its declaration as a formal input parameter
for procedure DECMAL (statement 1 in Fig. 4 .3 or Fig. 4.5) , the Library Cross
Reference Listing (Fig. 4 .8) can be used to locate where it is defined and
set. The Module Invocation Space report for DECMAL (Fig. 4.9) shows that
DECMAL was called by module INFO at s ta tement 7 . If fur ther track ing is
necessary , the Module Invocation Bands report (Fig. 4.10) shows that INFO,
which called DECMAL, is called by BLSTIC , the ma in program .

Manual backtracking to generate new test data is effective for app li-
cations like BLSTIC which have few levels of module invocation and few
t r ans fo rma t ions between the input of test data and ~he test t a r g e t .

By deriving test cases several at a time , rerunning Tcst Execution and
ANALYZER , and retesting , satisfactory testing results on ELSTIC werc achieved .
The report in Fig. 4.11 shows that in 11 test cases all modules except DECMAL
and FLTOUT received full coverage . (Modules BLSTIC and CONVRT each had DD—
paths not exercised during each ind ividual test case , but cumulatively all
DD—paths were hit.) The report shows which DD—paths have not been exercised .

Locating Dead Code. JAVS structural analys is identi f ies any source code
which canno t be reached solely because of the control structure of the program
(s truc turally unreachable code). Identifying log ical l y unreachable code
requires analysis of both the control structure and the values of the data .
This type of analysis is called data flow analys is ,-12 a capability not yet
available in JAVS.

For app lic ations like BLSTIC , however , JAVS does offer some assistance
in locating logically dead code. Figure 4.11 shows the DD—paths not executed
during any of the 11 test cases. Only modules FLTOUT and DECHAL have DD—paths
unhit. Figures 4.12 and 4.13 are the DD—path coverage listings for the two
modules , DECMAL and FLTOUT. Analysis of the module statements in DECMA L
(Fig. 4.3, statement 36) (or using a reaching set listing) shows that DD—
path 11 can never be executed , since PLACE is always set to 12. Thus that
par ticular IF test (statement 39) could be removed with no change in the
output. In module FLTOUT, DD—path 16 can be exercised , but only if the
appropria te combination of input data yields an exponen t of exactly 10 after
a considerable number of calculations (see Fig . 4.4, statements 69—71).
Continuing the analysis , it can be seen that all other unexercised DD—paths
can never be exe rcised , so the log icall y un reachable cod e can be removed
from the module.

Summary . The testing experience with BLSTIC may be summarized as
follows :

• JAVS report s provided the tester , who had no p r ior knowled ge
of BLSTIC , with comprehensive informa t ion about the organization
of the program into modules and their relations , the control
structure of the individual modules , and the use of data in
the program.

- _ - -— - -_ .—-
~~~~

. .— ,
~~~~~~~~~~ 

. .--- -
~~~~~~~~~~~

--- -- ~~~~~~~~~~



- - _ ---
~~~
—-—_ —

~~~~~~~~~~~~~~~~~~~~~ - - -_
~~~

• After testing with supplied test data , construction of new
tests was a straightforward process with the testing assistance
capabilities of JAyS.

• By using JAVS reports in a systematic way the tester was able
to meet the testing objective for BLSTIC: namely, to obtain
full DD—path coverage and explain all unreachable source code
in the program .

• The testing techniques used a combination of automated analysis
and manual backtracking which may be difficult to apply to
system—wide testing of large , complex programs.

4—5


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• i I I S
• U ~~~~ I
• •L. W I •• I ~‘. 1~ ,. a. I. t -. a _, I ~• U l.a — t~ ‘0 0 0 0  .0 I
• U UI.-. .- .,- - I
• !“ I 14
• I ~.t.• ~ 1 1 1.1 0 - I

t.c

,: O i lI t ~~~~~~~ p
S ;~, I= . n I
• I I I. i P. a. , .- — 0
• ~~ I 14 i —  r~. Cl .0I t
• I I .C
• I~~

) a . - I  -
• ~.3 I I ~~• •
• I ’ ~ - I  - S
I ~- a U

I - I  _
S P-4 I VI I

I , . $~~
.

• 5 0 0  5
• I I-I .0 1 0 CI >
• e •~~~~i-. i —_ .—I 0I S 1 9  C..)I ~l I . 0U I ’

I~~~0 • IS ~1 U s ~~. - 5 -
• I~~~~~~~•- 4.1
I 1 I H

I
I
-

I I 11
• k., •~~~~~ -
H • 

~
‘.— — — — ‘ .—

~ 
p

I. 1 . 0 1 4 r  I.

1~ ~
.I,. - $ 00

10 - I
I~$ P-’ 1-4 I-I II I—I 14 1 I-I I-I 14 I-I b-I -I I, I I

I. U I I 0I I-. 1 1 1 14 5 I- 0..
I - I ~.‘ t~ I P4 01 ‘a  a .0 5• ~f l I 14 .~ I a ‘0 a a a aO .0 5
• I U ~~~ U .— .— I

1$ U 14 .5
I I a.:- I
• 1. I 1 4 C~ I I
• U A . t.~ - I
• I .
I I - II t..’ I I~ I

~~ 
I

• I U~~~~i s ~ I
s~ • i.. a’a -

• I I .~ a. N a. , .— — a .~.‘• •. I e. ~~ I ‘— N ‘0 5
— I I ~- I
~Ua1 I I 0~~~~~I.— ~5 15 I f ~~~~~5p., II 

~ I f l I .  b~ I
~, 

I , • • 1.1
~c ~s p. a • I I Sil_I U I - I I  I

II ~ I V I I
l.~- I• I b.. .0 ,

II ~~ 0 01  1 I
I I-I I ‘0 0 . 0 0)I E a.I. I
I I• ~ O U l

• ~~ I m ~~.l .1
• I Z~~~ I •I H 5 .1-
U I I - I
• 14H 1-4 III H 14 lIP—. 1 4 1 4 1 4 1 4 1 1  4 S

~ 
I ; ..I 4

• •l. lu , (
I • o n . .  .4 . —.1W
• I I I Y ’ ~~ I’I n .  Cl P
• ,m . 4 I— ~~- 0l I 0)• Ill I ~‘-l. - I - I
~, p. ~~~ ,~ 

1.4
II ~~. I ” O U I  I
II Ic •~~l I I  I 00

~ -:
• a I
• I— 

• i-.~ p 5
• III I
• I 1.1 14 t) U~IJ U Ii t~• • 1 . ). 1 4 1 4 1 - 4 14 .-I ll • I
• I .’l- .~ l-.I. l. I-. .-. I. • I
• $ ~~ at. Il l UI I.i r VI III I
U I a .  ..I .Il, .I ....I I
• - I’l 4. I . S~~SI~~~~~~~ .5 I
I I- .1 I
• U - 

- 
a. I

• J J . -II I.. -
.1 4... - ,  . 14’  Ii 1 . 41  I. • I
I U 5: 5 :. ~: I-I U. -~ Fl • I
IS l.a I i .~~ C ,.. • , , I , i 1  S S

5 I. I ’ ~~~1-. $ a t l ,’. , , _ . . I ,  • I
5 4. I I I  1 . 4 1 1  I 4 . .~~ • I
II ~4 I I 55 )~~ $ .4 I. i

4—6

- .--

~

--- - ..- - ~—-—-~~~~ ~~~~-~~~~~~~~~~--~~~~~~ --~~~~~~~——.-_



-~~~

II I U . . . -
~1 I - $  i i  I • U I
- In  - •  - I  I U I I  - I
11 14 I - I  U 1 4 U ) I U - a  5
1 $ .  5 5 - I f I N I l l  5
$ 1  I I I I I  I P
1 1.4 I I 5 $ U - S  5

s • 1 4 * 4 4 1 1 1  5
1 1 4 1 5 • • l l  U I  I S
1 1.1 5 I I I I  I
5 5 5 5 U I - I - U
II •. I U 5 ~ I I I .. 4*  I
. (4 I ~ P ~~~ 4’4 I ~ -I ~ l Il I
I~~~ I U I I  1 1 $  I

I s -  - I $ ‘ I  I-
I t ’ -  I I 5 4 4 0 5 5  l . a . .  I

.I 3 .5  - U  I N I l U I . I r l r I -U
I i-. , S I I . I I  U I I
I a .  ‘ I  .5  .I~ 5 ~~~ 5
I ~~~ - I I I 4.•) ’~l I I S P I ll I

II - I  - 5  I~~lCl I U . $ P . P l  I_
s t . -  U I I~ I I  U I I
4 1 0 1 p I I -  I I I  I I
I I I  I I 10. 01 U l U  U
I v , J  1 5 ~ r I I - I  I-I
I l — l

~ 
I I I I  I I I  I I

IL l  I -I I I  $ U I  I I
554 I U I*) $fl I I I 0 1~~~l S
I n  I -9 4 S r —  I S • — r  I

1 1 5 1 5  U I I I I  I I
S O  I 4 1 - I  • l ~~ I - I

I U I ~~ I U I I r ’  l I’0 Ic I
1.1 1 I •I - . 5 4 U . I  I . 5 fr P

~~~~~ 
$ I I I I 1 1 $ I I

l a I -1 I I I - I I , I I
- I b-I I I I 4’- r I U I ~~ H I
l I t ’ I -I U I I U~~~~U - I

:~~, .
~~ -: - :1 : :.. I

.5 54 I- .1- a. Dl 9-~~~’0 -1- I - 1 P9 9” I 4.
S O I I I I I l U - p. s

~~ ~
I U I - I I S I I

P. i s.. 1 • • I I i i - , I a
~~ ii 0 I I 14 14 I v) Ifl 5 I I 0 0 I
= I I • • • • • I — ~~~~I 0..
Cl I H ~ I I I I l - I
U... 5 11) 1 I U I U I I I U

II H - U U ‘010 5 .S ~~ I I I a~ Q. I
0 1 1 . 1 1 U 5 I I l - U I

II I I S I I U I I
~I I I I I I I I I ‘V

I t’I CI U 544 Cl I p. ~ S I I S P.4— 5
~I - I F l - I - • I I~~I I ‘II, $ 5 U I I I I
II •~~ -- ~ - I I I I I
1 I 1 1 5 U I . I I - • U
~1 ‘ 5 4 1 ‘ U ~ U U . S I 5

U I I I I I I I I I

I’ •~ i I i i ~~ - J 0)
• II 14 1 p. I-I b-I I-I I H ~1 $ • I I-I P-4 I
5 I I I I I I I I I I
‘I ~~~ U ! 1 I I I I I I I
1 1 1) 1 - I l l I • ‘ • • i I
• ,~ c U P- — • a. • ~ a f’ • $ I •
II I. I I I ~~~~~~ i i i — p - s
II .c I - . I I • $ 1 I I I •

t ’ • P . D I I I I I I I I •
• a t . I I I I I I I U

Ii II - U I I I I I I I
t ’ II ~-1 b--I I I-I I-I I 1.4 1.-I I 4 b-I I I I b-I)-4 I
~~ II - S i I I I I I I - I ..-~ ‘
LI 5 I a W l I I f l 111) I l - l U ’) I

II 1 f I.- Ut - • 1 I f ~U— IS I PU. S ‘4. I 4.. I I $ ~ I
II 110 1~~ 0 I~~ I 1 - 1 0 1 s__ i
II I p. I Cl I N I I I I’l j I S
1 I I ?~.. S ‘U. I 4. I I - I ‘U. I I 00
5 I U a. I ~‘. I I I a. I I

I I -t. I I C I 0 I I I CI I
— 1. C I - .1 I. - I L l. I
fl ‘5 -1.4. 5 . 1 ‘ I .~~~ I 5 I ‘I
11 I I l l III 1-l U 1 . 1 1 . 1 5-a l
14 I Ia.- •~~~~~~ 4~ f .44 - • .4.4 . f . I . p b-I. f
~ - I l- .U U x l ~~~~I x I I ’ I ~~~ I
I) ‘ U t ’) . I • • .

~~ •~~~ I
14 5 14 1.-. I I-. I •I I II I I I I-I I
14 I I U I 4 1 C I. - C a~~~~0 I U I C ~~ I
1.1 1$ I.’ I Z 1 I ~~~ I I Z~~4 l ~~ I .4— I

- • 5 1 5 5 $ I I I 5
54 a l 1.1 5 .1-I ~~~~~ . 1 . 1 1 . 1 .-I 1
0 .1 O - I 5 . 4 l I - . - I 1 .~ - I I . U I - . l~~~ I
14 - s 1.-I I f . . I4 5 r4 c. 1~~~. I--l U I - I I’. * I

- I - I 1 . :Cl I , : C, I , , O 5 1 5 1 : 0 1
111 I I - 1 1 . 1 1 4 . 1 1 4 5 4 1$4 I-.-I 1 - 1 1 4 1 4 1’
x I I I l-a I I. 5 $. . • $ ~~~~I- j I
I-. I~ ~~~ I I-. I ll I I I)-
.4 $1 I .4 44 15 .$.4 •4 •4 • I I
P. I I I I $ I I I I
I .I p. . H - I p. l I. I 1 . I - 4 - s 5 - - I I. a . (- I - l ’ - ’ - I - - ê

~~ U I I I I I U ~0 ,14 1 - I I II • I .s • • - I
1 1 4 I I I I I I I I 1

.0 I I $.4 1 - J . $ I J . 5 5) - I L) . 1 I . IU ‘ I
0 - I I-~~ .. I $.-l $ 1 4 I - I 1 1 1 1 4 5
I. -1 1 . 1 . 4 1) . 1 $-. I s . I I I I I

5 5 -~~~~ $ 5fl 111) 111) I I I I) I
$4 I~~~- I~ .I I .-) I l-I 1 1 1 . - i I

.l~~
-1, - 5 5 4 . 4 5 5 IpP - I 5 ’ I ’ 0 l ~0 II I - • .5 5 5 5 5 - I

P. -I I 5 I I I I I
14 5 - I . 5 .I I I ’I ~~~~~~ a55 II I) I 5 I I l - I ‘I

-I .4 1.1 1 .1 • 5 - III ‘I 1 - I IU I
lI I F l * 1 1) 5 . 0 I a . I I ~‘
> Il l .. • 1 5 :- 1 $. U I 5 (1 I
.4. I I. 1 4 I $. 1 I a t~ I ’ 4 I I I I $
•5 I I: I II . (4 1 II I 5 ~ I

I L, l
~~

4 • ~ ~~~~
•

4—7

.

~

. I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~ 


— ~~~ ~~~~~~--~~~~~~~~~~~ ‘ - -~~~~~~~-

~~~~~ - - —

MODJ L( ST*T IP(I. T L ISTINII

NOOJLI IOECIAL ~~. . ISM ST IXT  I ILSY I C  U , PIRINT 110011.4. ISLS?IC

110. LVI. ST *T IMP NT 00—PAINS COSSNOl.

I I DI h O C  DEC 15). U INPUT I I I I II
2 I II 11(14 QEC IIL I I
I I 51 11(14 INP IJTI II 12 $
• I II 11(9 *41 II 12 $
S I SI LIEN PLACE 1 36 S $

I II I TEM 1NTr ~SI4 H $2 p lOll I I
7 I $ $  IT E M  F4C1414 N I?  P 12)4 4 $ $ I
• I 3$ II~ M (NTIS 1 36 5 1
I I II ITCH FECT S 1 36 S I -

,

II I Ii 51 (14 INSISt F S -

II $ 5 $  L I EN FACT II I I I -
5 2 I I) 11(5 COU’II1 I 16 S I -
1$ I II 11(11 COU ST? 1 36 S S
1. I II ITEM (4 I I I 7 -

,

15 I II lIE N PP -~1 I I -
1. I II 11(119 --
11 I II IS O( CNAL SI
15 4 II SRI U INP UT S S
II I II SE ‘ 0 $ -
24 I II • 0 3
21 I 1$ INT1SN • 1294 I A
22 I II FRCTN N • 1211 1 I I
23 1 11 ~O A 1 ’ S , I . 1 1 I (0113
2, I 2) 81,19 ii
2 a I 25 IS 1 51
2. I 25 IF l IfE II I II I *110 $ (3 0 1 3 1 5  1 I 2— II II I
27 I 3$ 9(119 II
21 I 3 5 ~LA C( • I I
2_i I 3$ IF 5114 II I I I II I *41 5 (I 04245 $ I 9— 51 II I
II I SI 3(119
31 I 9 $  ~)9 C. ‘ , t • II i (OS)
32 I II S IT E  5 $  I II I ASS I • 01111 I I 6— 71
33 4 .1 ~N0 -
3. I 3) 1013 St $
35 • 35  19)

3* I 2$ P1. 154. • 12 I
S) 5 2? FIll I I— NI
31 $ II SI I It
34 I II 14. PLACE 10 12 I I I I— III IF
*0 I 2) O(~ 1N -
.1 I 25 4.04 II • I • $ • 11 I (043
*2 I 31 5 (119
1.3 I LI It ) 4 T T V  II IC II I 4111 . I (0 i l lS)  I I $2— Ill IC

~ 5 I 9$  3 (115 I
I 4 )  it  P~ I I 1$. 15$ IF -

I.. U 55  111111
*7 I 5) ~LSC P • 4. 1
Ill I SI (39 3 • 5 • I • 11 4 (053
SI I II ISIS II 3 II U 5.41. $ 0 151 )  I I 16— 11)
SI I II 1010 11
51 $ II CII)
5 2 I SI  GO b 91 I
53 I 91 (53 -
59 1 31 P P . 1 1  -

55 I 3)  II. I I V —  Ill

Figure 4.3.  Module Listing for DECMAL

4—8

.~



~ ~- - _ -~~~~~~~~~~~~~~~ - —.- -~~~--• -~~~~~~~--- U~~~~~ -—--

a. I 2) OICMIL • CONSIST I 590 I $
57 I 2) COT S 511 I
SI I 25 FIll
II I II S t .  FOR) 

4.09 1 • S , S • IS I
SI $ 21 111.14
61 I L I  SI $ IS
62 I 25  IF A R T S  II I SI I ISO I 53 01151 $ I 25— Pt )  IF
63 I 35 (.OT )  SO I
•. 5 21 34. 977) IA 3 1) I *84 I ‘SI OIl?) I I 22— 7)1 IF
65 I 3$ ~OT 3 52 5
I• I 2) (5 • I S
5? I 2 $  B IT E IN I I) $ ASI C. I I 01111 I
50 I SI 1010 5 4  4
a _ i  I 2$ a ?. I 25. — 25)

(91
TO I II t~ $ St
7 $  I II SI.  $ 26. 27 1 (5

It pL.- ; E 45  4 4
72 I 2 5  .11.11
73 I 1) 5 9 3 1 41  • I?HII I I IDSII ITNII  S
7. I 2$ 1.011 4 $ 5
14 I 2) CIII
7. I II 3531  Il $2 — ~ LICI • PLI CI II I INT l_ iN I • 9115 IS I • •LA CC II I

I_il.. I S
77 I 1$ It PLA ( t O  ~~ 

5 25— 75) (1
71 I 2$ B(~~ t~ I
7$ I 2$  31(941 • 509931 I INT ISII I S
II I 2$ 1010 54 1
II I 25 IN)
$2 I II all.

3714 II 1LA CF I C • it PLS CF II 4 F.4~~1N9 I • A V I S  4 $  l).5C( * 1
• I t  — PLACE 5) I £91.  I S

53 I II It PL I(E 10 I 5 I I I— III 14.
3. I 2 $ flI~~IN

5 21 IN ’~~4 • I I
4, $ 2) 1.0511 Cl I
57 I 2$  (P.)
II I $ 1  16114 ~ 0 NV4 I 5 19119 9 I I
II I II 4 2 .

(RCT PI • :OP.VS T I F3(INH I 5
10 I I) I9T C.’F • ISIGN I
9) $ I) t IC T IaP • 4.R CIII I
12 I II FS CT NF • ( I IT IF  F $ t I I it — PLAC I I I 1
13 $ t I  11 CMII. • (NT )R t  • FSCIS4.

I II SI.  I 32— 155  I 
IF 5)1 < 4 1

I; I 21 (.0111 513 4
$ II 11CC).). . - 0554* 1.  I

47 $ 1) ~t 3 .
‘IC

Figure 4.3. (Cont.)

4—9

-~~~~~~~~~~  - -- -- - - --



- — - _ -
~~~~~~~~~~ -~~ - - ~~~~~~-

RO OLLE S T A I I P S P . T L I 1 . T l P .~
933311 I lL ICIT • . J I V S I I) T 1Ju l11 I. P15(93 MOOUL E 4SLS T I C

40. LV I S1& I ~~NINT 05- PAINS 5091191
I U I I PI IC E.100 T I IIIPUTI • St).414 $ I I I)

I II)I~~M Qui l l I SI. S £
3 I UI 1II~~ 15049 II lb I
• I II 1 3 2 9 0 _ C P V
5 I IS 1)19 VP F I

• $ II L I O N CIA I 15 3 1
7 I U) IT I N III I 41 U $
5 I 01 11: 1 4 ’ 1 6 S 11

I 0) 1 4 , 9 .11 I 3.- 11 1
Ii I UI I C I L L h r T A B V $6 S I
t I I II -111.14
1) I II 1111 ($1 S $9 II
$ 3 I II 190
I. $ DI I T E M II~~j T I C I
I, I 0 $ I l l _ i l I T : I I I

II ~3~~N 1) 1 1 5 I P. S I
1? I UI 35111* , I I I’ ’ • O T T)
IS $ II 1(1.0 9
1 _ i $ II S t Fl T I r : T St
2a $ II 09 ‘ 1 S
2 $ I II 31.311 T : 1J T 1 I
2) 5 II J T T $ I T I I) $ 51 044 I • 0 1 2 3 $ S
23 $ II -lvii II 7 DI I St U la $ • 0$))) I
2, I II 134 1 1 • I • IS I FOR)
2, I 2 $ 5 5 ! ! II I I) I 0 1 3 5 9 $ 1 3 1 0 0) 5 I 2— II
2 4 I $ 1 IT S II It SI $ sS J ’ I$ I • 3 1 2 0 1 1
77 I II TI O UT ~~T 11 I I I 1 .— 55 IF
25 I LI S L I T S
2 _ i $ 21 5 Y T ~ I S I II I 1.1299 I 1 3)60) D
L u $ 2$ l IT) $1 12 II I SLOSH I • 0 1 4 0 1
it I 2) 1030 J23, I
32 I 2$ FI. L
3 3 $ II II O J T ’ I 5 4 1 5 I I— ‘I IF
S. $ LI 5I~.I~l
3, I 2$ S T T I II S I) I Sb $ ‘IH I • 3)60)
3, I LI IT 1 ‘ I UT PT I
37 $ L I 01.111 31 I
SI I LI II.)
3 _ i $ I) oIl I’ 27 • I II I J U T P T $ • 777 7 777 77 — SIT IS 27 • I SI 3 SUT IT

I V
*0 I C I l v • — IUT ~~T I
*1 I II 1111 IS I I) I SEQN.I $ • 0 1 5 2 $ S
52 $ II L I . I I— NI I

11 II .3 I . E — O I l I
.3 $ 2$ E-C~~Il
*. I 2) 3131 It 12 T I I 5(0319 I • 3 1 6 0 1
Is 1 2 $ lI l lY 10 1 . 2 1 0 0) 1 1 $ T I 1 $) It
61 I 31 1 ,14
*7 I 3 $ CII • I I
94 I 3) , IT O 32 0 1
a_ i $ 3$ 5 9 $
SO I 21 50 00 J t O 1
a t I 2) 1911

I t I I S I S II 17 SI I 01349 I • 3 5 5 2 $ I
~ I I 1)) $ C • 1. 1— O I L I
5. 1 11 F 3 $ I I • 0 . I 3 1)97

Figure 4.4. Module Listing for FLTOUT

4—10

I ~ ——- ~~~,‘-- —— - —— — —— -~~~~~~~~~~~~ ~~~~~~~ - -~~~~~~~
- -

-
-

34 I 2) *41 14
Sb I 2) II 57 ~~)l - 9
37 I 3) ~I) 1) 2 5 $~ Ill rr
$1 1 2 1 CO9 . ’N . I I
34 I 25 OE • It • I .E- I l l I
65 I SI (III
6$ I t O .1*9 .

• iI.(IINI I
l O I S) 10 1 0 . 1 . 1 1
6) I 21 5(159

COSt

6. I SI 11 Iv IS OFC I
6, I 35 .053 312 I

IS IS) It

5. 1 51 C O I $. C l N . $ 5
67 I 25 Sf0 • IFC • ~~~~~~~~~~ 3
65 I 2) 153
S_i S II JO?.

P97 II iS SI • CON I II I
II I is SE N • POE II 15 I) • II S
Ti I I) IF CON — 11)4 EQ 5 1 I 16 I?)
12 $ 2) 1010 it ’ S

IF

70 I II S I T II SI • 6 1) I 1(011 I • COIl — 11.4 4
74 I 1) .11* . —

~A 1 (IC II. RI • P.51 (3 15 II / IS S — —
7, I II 1211 • P55 IS 19 SI • 10 1
2. I II IF P-SE IS IS SI — lEN (2 I I I II 191 II
17 I 2) 1010 310 0 -S
71 I II 1111 IS II. • SI I 1(015 $ • PIlE II 15 5) — T IN 5
71 I II J t S . I 20 715 15

11 CON I III 70 0 5
II 5 2) 10111 320 2
Ii I 0) S I T II TI • 6 II I 5(09)4 I • CO’S I 155 5
IS I $ 1 2 010 370 S
53 I II J ?S. $ 22 III IF

IF VI IS I .5 I11 S
I). I 2$ 51019
I, I 2$ P11 II II II • 11 • IS . t . 0 0S 1 I I • co.s I S
IS I 25 6010 J O? I
I? I 2) (NI
SI I 11 CF IV 1.0 I D 0 I D D D O D I . C ’ 0 0 1 S I 21. 23 5 11
IN I 2) 0(10 11
VI (25 PNC $5 1$ II ST I II II I COIl — 4) 5
It I 2$ 1010 J22 S I
Si I 2) (ISO
90 U I) PSI IT it II • vs • t S . E U O S S I I . COPS I S
9. I t I 322. FOSO

FOR 0 • ID . — I • 3 2
55 I 2) V IJ I M
9. I 2) III II I II • 115$(5$ (• 5 II / $5 5
97 I 2) If ’S • 15f 5 5 1 SI • 10 1
SI I A l IF PRO S R I U C 5) — 11(9 4.3 3 5 I 26 271 IF
53 I 3) 0013 32) . I

t SS I 2 5 J2 • I • 6 S
tI S I 25 33 • PSI IS I S I SI — T El 1
LI? I 2$ 50 1 II JO • 6 SI I 5(099 I • .1) 1
103 $ 25 324. I 23 291

CAL
II. I II J2 b. I SI III IC

L I I NPEI T I 1.0 5 5
LII I 25 $$ TTC IS I SI I 5(393 I I 0(52) 1
156 $ II 1ITF II I SI I 5(51111 I • 01211 I
tO ? $ I) $11 5 II 2 II I 5(511)4 0 • 0 1) 3 1 5
113 I tI IF ITT) II LI II I SEONII I (5 01211 $ $ 3? Ill IF
139 I 2) 5117 I S $ 3 S I I S(QNN $ • 01111 1
51 3 5 0) 104 5 • 3 • • II 5 FOR)
t I L I 7) $5,111
It ? $ 25 IF NOT I S T T F IS 4. 4) I S(-335 V I (3 $511) 0 1 I) — 05) IF
113 I 35 5(1.19
Li). I 3$ SY I C IS I II I 4155 0 • 01111 II S SI I 5(0114 $ S
113 I II T O I l S • I S T T E I 01111 5
116 I 3 0 SITE IS IC V I $ 1(06)4 I • SITE II 5 II I A I l S I 5
Ill I JO 211 3
III I A l FIlL I 04 — 3 7 5
115 I II 104 4. • 1~. • $ • t 5 1 5093
ill I 2) 4(1.19
Ill I 25 It 3501 I LV II II 4. II I U(QNII I El ta I lS) I I I SI— III IF
t O? $ 35 3(119
123 I 3) SIT ’ IS 0 II $ 511€ I a SIT ’ IS 9) $ ICON_i I I
124 I 3$ O N I T O • 19110 P 0 15 0) U
$2 5 $ II S ITE Ii 4. II I 5(011 I • lYlE II S 11 I li lt I I
026 I 3 $ 09)
t iE I 2) (1111 I SI— III
12$ I II IFTU 4PS S
$23 I II IPSO

Figure 4.4. (Cont.)

4—li - -

-
— --

_ _ _

p.,---— ~-----
~~~ 

—-----•- _ _ -  ——--—---.. - - -  — -.- •_ --_- -_ -
~~~~

- - ---- - - -_-- •— _, - -- - .- _.---—-—-—- --—•---

000311 10—11111 o r r T N $ 0 1 3 b . 1101190

100311 SOICIlI. .. JAI S T I I T uM$.?IC •~ P A $, 15T P)T OIJL(u4151IC

NO. LV L I lATLI l) . ! I0-151I45 1.€I€IUTEO
I I II 43 C 110111 I INSUlt I

0 0 - P A T H I OS PPOCF OUSF 10091

23 I I) FOR L I • I , Ii I
29 I 21 SF114

2. 5 25 TF 0!TF IS £ 1) I £51. I 1 3 O I l)) I
00-PATH P II TRUE 1119CM
03—PATH I IS Cl ISt IOSNCV

24 I LI IF l Y I R II I I 5 II 1 14.1 I 10 11125) 4
“ 03— PUSH a IS TRUE IRIICI

00— PUTI 5 IS FA L SE RH INOS

31 4 4)) S I • S a Li I
O S I SI -S IT , IT S SI I A VG I a 0110) 1

O0- IIT .I 9 IS LOOP ON FOR SCION
“ O S— P A T H 7 15 FSCAP(FOIl LOSS

37 I 2$ t PI3
03—PITH 0 IS I_ UP 09 ‘01 11*19
10-PITH 11 15 E SCAP E ElI LOOP

3_i I II I F Sl ICE I) 12 1
•• T OO - P I T H 11 15 TRUE S R& NCV

00- ITS It IS b l a SE l~~SNCV

1.1 5 2) ~~~~~~~ 5 . 1 1 1
42 I 3) SF TN
93 I LI OF S I T E IS 4. II I ISO I ES 312 1 $ 5

00—PA ll 12 IS TRUE IPIMCII
03— PU SH 111 IS FIL S E

., I 4) 1F PP S
•l 30—PA I lS 54 IS TRUE IIIII C II

0 0 — l A T H IS IS ElL IS 115*0CM

4 1 1 1 1 r I R J : 4 . . t . t t l
Ia_i I 6) BYTE $ 5 3 1) $ III I • 010 3 1 1

O0- ’ I TH 16 iS LOOP OIl (01 SISIII
0 3 — P I T H 5? IS 1506SF (09 LO O P

55 I 31 UI.
Ill

“ 0 0— P I T H Ii IS LOOP 09 FOR SSuIII
3) PIIH II 10 ET CIP E 108 LOOP

53 I II 4 $.
-

FO R S ‘ I a $ • SI I
60 U 21 £15 19

Si I 2) £t i0~~T~ $ 5 I 5$ I III I EL 0131 $ S
00 — PA l M 25 IS TRUE lIAISON

21 IS F A L S E BRAN CH

6. I 2) II- 9 ;T(IS I II I SIC, I 113 3 15 2 $ S

0).P IT H 7? $5
OS — P I T H 71 IS FIuS E IRIMCH

6_ i I L I I?.
190

0 0 — P I T S 79 IS LO0~ 09 ‘01 10119
“ 0 0 — P A T H 25 1) F~~CIPF 105 lOOP

71 I 1) Si .
I F PLA CE ‘0 I

01—PITH 26 $ 5 TRU E BRANC H
03—PITH 27 IS FALSE BRANCH

77 $ II IF P LAC E IC $ 1
00 — ~~l T 4 71 IS TIUF BI SMOl
00 — l A T H 2_i IS F A L S E ISINCH

Ii I II 1(1:1CC El
S O — P I T H 00 II TRUE 1910CM
l 1 0 1 T 4 111 05 FALSE BRAN CH

34 I 1) S_ i.
IF PlO T ~~ O S— P ITH 32 IS TRU E BRANCH

. OO PITH II IS F ILSE HRIMC H

Figure 4 .5 . DD—path Def in i t ion Lis t ing fo r DECMAL

4—12

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~
-_

~~~~~~~~~~~~ — -—~~~~~~~~~~
- -~~



— - - - - --- -~__—- -_—~-_ - ~~~~~~~~~~~~_ -_ - -_ -~ -__- - -- _ - - _
~~~~~-_ -•-- -

PICILURS 511$ ILL 30-’ITHS...

500JIE 502(14). •. J * V S T) T T 481.0100 I, PANEl! NOIU,.E .41)100 I

ST IlT STHT
IS • 1(605. 1 • (NO. S • SEL l -LOOP) ITSI 113. 30—PATH NUNBENS. ..

•PRLC II I I

(•~~E 7~~I (~~5 0 3

H SIt 2_ il $(13 4 I

ST 5* 5.41 321 (III 6

O ‘(NO 371 111(1 5 B

‘ It III 511*1 II IS

S ‘IF 431 B.EI*I 02 $0

• 4 11 451 f.0.$II 14 IS
• •4*•11
5’ SAS S? 491 lR(.4Re IS IT

I 1(15 ISA .. 0*1((IN II

4 1F 621 (31(508 55 21

• 4 1€ 641 III II 2? 23

~ 11(95 621 ~~ B).

41€ 711 8(550 26 2?
• S I

SIC 771 49501 25 29
1 4 6*

sIt 03’ (4*500 SI 31

11€ 5N~ lESSEE 3? 33

• 4S
4(90 971 (ES

Figure 4.6. Control Flow Picture for DECMAL

I t E R A T I V E RIACI .I4a 15$
37 DO—PAT H FIlM 3D—PAI lS I

NOOJL(S0(CIVL I. JIV STI II 511 3110 I. P10(111 N3tOU LE ‘ ISLO T IC •

I I II 11 0(0CC_ il L I I N U L T I I I 5531011110 00P
)0P_ i I 5 I IS PSOCF0uRE INTIT

I. I $ 1 2(119

II I I I
- -

All • 19001$ I
5 3 5 5) ‘IX • S I
Al I 5) PP • 0 1
2$ I SI 1111311 • 1211 I I
22 I 1) FS1CIPIH • 12.5 $ $ I
23 1 1 $ E O S I S O . I , I t I
5’. I 2)

2. I 2$
•

II ST Ir IT 1 41 I A W E . I I I 0 11 3$ 1
2 0 — P A T S 2 15 TRUF BRANCH
30—PI tH 3 II (lISt ISA NC M

27 I 3) 51)10
25 I 3$ LA C E • I $
25 I 3) IF MI TE TI I a I 5) 1 I_ iS $ EQ 052 01 1 2S5(NIIAL PIt OICA IFI

“ SO— PAT H S IS TRUE NOINCH
35 I .1 4(0tH
3$ 5 4) 1)51 0 • I • $ • $t I
32 I SI N T TE IS I) I $05 I — 3 1101 I •(SSENTIIL PNEOI C ITE • SNOIN 1 531

“ 00—PATS S IS LOOP ON 134 SlAIN

3. I 2)
-

PLACE • $ 2 I
37 I 2) rHO •FSSF N IIIL PRES ICITF

00—PITII B 15 LOOP ON 109 11119

Figure 4.7. Iterative Reaching Set for DECMAL

4—13

_ --

~

-- •- -_
~~~~~~~~~

..
~~~~~~~~~~~~~~~~ - _ _ - _  - - -  - -- -- -


91~ER71L CPoSS lItrE E1~cE LXST ISG

?01 UI(OtE L I S 8 A ~~Y —

1YMP~ MOD ULE 3~ D7SEI/DE?Il1~ TXG- 1 (•

£1 ILSTIC M a ’ 0j5 4*9 51 55
£9 BL S7 IC

_ _ _ _ _ _
5*’ 77 __

&CA~ N I t S?Ic ~~ Ii~~~~8U 8Y
71L06

_ _ _ _ _ _
BLSflC

_ _ _ _ _ _ _ 4*9
DE CMAI. MD 181 26 29 32 Ie~ M9~~~~56 62 6 T ~~~~67 7~~~~

71171$ 5L571C 53
51 sLS’rlc 15 1’ II,

~Xo1. c O NVRT
_ _ _ _ _ _

3D 11 ~3* 18 25 29 39
3LS?z~ 27D~~~~4 ~~~~~~~~~~

C 2 _ _ _ _ _ _ _ _ _

~

LS7Ic 13 1 1s9 53
C3 8LS?IC 012~~~~~~9
C°1 FLIOIIt ~~ 17’ 4 ’4 * 55* 55 63* ~a 66 68 70 7~ 78

~~ D)1V8T C0~ V RT I I4~ 1~ 315~ 15U’ 89
_ _ _ _ _ _ _ _ _ DEC MA L 56 79 85 89

BLSTIC ~~~
C0UN~~1 DE C’~A L 12~ ___
CÔU~ ?2 DEC !~AL 13 0

_CT 531 55 72 715 * 701 75
BL S7IC 3”D

_ _ _ _ _ _ _
BLS?XC Ol Il l 159 5~ __

07i ILSTXc 5i ’~~
D8C _ _ _ _ _ _ _ I LTOUT ~4D 50~ 53 56’ 56 58. 61 6 15’ 611
DEcK~L j~~~~~~~T 2 ~~~~56i ’79’ 9T1~~~95* 96~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
7

BLSrrC 310 016 157 MB IoU
UL5TIC 35’ 3g 150 504 ______________________________________

T1 OtjT BLS7IC 57~~~~6O~~~~6~~~~ 605~~~~65 6~ 70 12 75 77~~~~~~~~~~~~
—

_ _ _ _ _ _
71.1’OUr________ 1 ___

7lI~ T41 tEC~ A L
T 1I C TNT DEC P-AL 110 91* 92* g2 g3

70 22’ 92 99
Cl ZLSTIc 280 *5 059 53 ________________________________ _ _ _ _ _ _ _

G2 !LSTIC ~~~~~~~~~~~~~~~~~~~~~
—-_ _ _ _ _ _ _

B L S T X c 3~ D 0*1 002 053
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

32D 90 9~~~~~~~ T~~~~~~2 N3 SJ —

h OLLY B L S T X C 5~ 57. 60* 62’ 6~’ 66. 68* 70 72’ 75’ 77*
L0710 II

X N T O EL5TIC 3s 3 6 37 38
xt; r 0 I

Z I SP U T I BiSTIC 60 ___
D E C ~~A L ~1~~~~~~ 3F i8 -

T I .TO U T I 115~ 18 101
6 7

XIITG8 DEC’~A L ID 55’ 88’ 90

I)0’TGIT fl DF.C I1AL 6~ 21. 73. 76 7g 88
82

1021 8t5T c 81*
±02 2 j iST xc 86
102 5 ~ L S T I C 85 ___
1030 aL STIc

—

1031 BLSTIC 25
XOhC 0T~~~~~ LSTXc ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 4.8. Library Cross Reference

4—14

- - -— - - _ _ _

NOOJ1E INVOC A TION 00101...

000310 .O (CPAL • . J A V O T I K I 5113110 ~. P A R E N T 110301E SILSTLC

P_i3~ O (C NAL I INPUTS I 5 I II

1NV3C AI IO NS 11101)S LT 4 5I I IS IS ‘IOOULF

N00.ILE CONV (3
ST Il T • 5* COIH $ ’t $ A- l U $
STIlT 7_ i CONVO T I INT (..SH I
STIl l • II CO9VRT I IN TGR H 5
311? • $3 COMV I1 T I t SC TNV I

INVOCATIONS 10 THIS M O D UL E FROM V5 THI’5 LI 9R~ M Y

IOO JLE I NFO
SIlT • 7 0(0111 I I1*UT$ I

Figure 4.9. Module Invocation Space for DECMAL

NOOJ IE INNOC ST I 0N V A S OS

N 003LE 401C11*L • . J I V I T I O T S V L 5 T I C ., PARE N T NO 3U IE SIL O T IC I

LE VEL —S — ‘ —3 —? — I 5 5 2 3 4

01011*1
11* 0 CON YR T

31 ST 0 C

Figure 4.10. Module Invocation Bands for DECMAL

4—15

~

~

1~~

— I I I I I -5 $ I I I I - I l - I
I I I I I I I I - I
I I I I I I I 5
I I II I 5 I - I l - I
II 5 I 0 1 . 1 1 - A
I I I 5 I - I - I l - I1 I I I I I I I I

- I ~~~ I B I - 1 1 . 1 I 5
101 II R I .1’.I - - I - I - I I
I II. I I 5 !I~~~~IN I - I
I~~~ - I - I I I - B I I I
5 5 . 1 a 5 I I I I - I l - I - I
I Ii - A I - 0 00 - IN 0 I $ I
I~~(‘I I I 5 I N)) IN I I I - 5
554 - I I 5 I I I I - I
I I 5 I I I - - - I I I - I
I ~-. ‘ I I - - I ~0 UI IN IN IN 0 10 5 $ I 0 0 0 0 0 0 I
$ 0 - I I 1 I’5 laS $aS I~~ PS 10 10 t I 1’ a~IP S AN IN IS aN I
I11. - I I - I - - I I I I

I I I I)- 5- 5 I - I l I I
I (a-i - I I - I ‘0 aO (110 0 010 (3 I I I ~~ 3 3 3- 3- -~ V
) ~I) I 5 5 p I (‘4 (‘I IN IN SN PS a-S I5 - I I I CS IN 7)5 C’S (‘4 (N l~’5 (‘1 I
I l-S 5 I II - - I I S I I I

I 5~~~ ~ 5 5 ~ 5 I
~~~ 5 I

I 0. I I I a-I a-S 10 ID UI a-S ac ‘0 10 I I I a-S IN IN _t (‘4 IN 7)5 0 01’s I-’. II I p I I S I (‘I (‘S (‘I (‘S (‘S IN aN IN I’S I I - I SN IN S’S C-S C.I IN IN “1 fl IN IN I
l i z  I I I 5 - 1 - I I  I (  5
.10 II I ( I  - I - 1 I I I  I
5 A-i , I I - I 0~ 01,0 1 ClaN ‘0 0.0 IN I ‘0 I I s- .-- .- s -i - .-~~~ r. a’s .- .-
I Ja-.s .5 I I (N ~~ a-I (‘I 10 aN (‘S Cs I - I I (‘1 IN IN I~S a-S C-S (‘S T’1 a- S I N  (‘4
1 k  II 5 I 5 1 - I l l -
I I-) I I I I I I  I (  I I
I 2.5 $ I - - I at) 51$ SN An IN N 10 aN Ifl 10 10 5 5 I 0’ 0. Cl . 0. 0’ USa- 01 (‘aIM I I
I 3 I I’ - I S - s r’S INCN (’SIN S~~ININ I $ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- I i  5 -~~ - r I I I )~I $ 0 5  - ( 5  1 I 1 - I I I
- I 1 I S-S INS-S IN IN IN IN IN IN - )  I - I I  . 010 01 0110 . 0  $ I I 1 0 1 0 . 0 0 1 . 0  0 1 0 . 010 115 .0 1

I I— • I 1 0 -~~~~~~~~~ I 5 - I I ‘S- :~ - a’5 - r~ 
— I -5 $ s- — H-- ~~~) aN S 1.1

I I z  I - I I  - - I  - I l i i i  1 0
• I o  ~ -~~ - I I I I  5

- I ~-I I *1) .53 UI 50 afl .1) It) In If) - I - I F- F— .1) 2.- In In IN C- F- 10 F~- I I I IN IN INlO (TI IN a-) “S IN IN 10 ‘0 -  5
I I’S 1 I - 5 I 5 - a - l  N I I I  ‘ - T -  I Ci
5 1.-i - I  I - I $ - I I  I I I I I~ - )~~~~$ 5 _ 3 .2 I - - - - l  i - I P .t I~I 1.5 - I ~t 3~ I2~ 3- 3-- 4 S 3- ~-2~ 0 5 0 ’  0% I Cl CI Cl 5 ‘0 10 Ia ‘—~ a~t 10 IC 0 I I I r-( (‘4 a’s q~-a 7) a-_i —I ri c_i -. ~‘S
I~~~ 5 - I - I I I  - 

- I — ‘ — 5-— 4’S I I I  p— .— —— .— .— .— .-- •— —— .— .— H— II ~~a~) I I  5 - - I I , I  - - - 5 - S I l l  — - 
- I

I- I I.. I - _ I  
~~ • I CU

‘~~ l b  $ TN IN IN IN IN a-) a-S ~~S aN - I 10 01 - 1 0 1 0 1 0  10 I 511 511 F- F- F- 523 03 sn In I I 5000 (100 C’ 000(1 C-I 5 5..
(‘5 I I  I I I  I - 5’S I I I  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 5)
O 533 5 I 

- I I  I 5 I 1 1 1 1  - -
—~_ II ’ ) I - 5 - — I I  - 1 1 1 1  - I )o s I IN IN a-_i (‘SIN CS C-I (‘1 :1’S (‘5 I .010 4.0 ‘0.010 ID- I 3.3 10 ‘0 10 — 3 -  3- 1113 I I I 4,10.01001 01 0’ 0’ 0)01 IS-Cl I I 0

~ ~~
.— - 5 - 1 ~~ I I I  I a - i l

- I I I - I J I I I I I I I
I I - 1 - - ~l ‘ I I I- I - I a-4~~ ~~~~~~~~~~~ I (110 (‘4 7)1 ( ‘4 (1  C-I (MN SM a-I I IN (‘43 3- C t  50(1(1 $‘4~~~ I I I 2.~ N NC’ C-- N 5’ F- N F- F- (‘SI- I 1 T  - I I  - . 5  - - - 1 - I I - I - I s  ~~
$ I )  - 

- I I  I I I I  I I I  I - $ 0 )
I I - I - 5 I I I  I - S E—’$ - I I I  - — S - I l I - I

‘I I) - I II I - - 1 . 1 . 1  ‘ - a
• I )  I - $ I (~ 

I I I I I  - ,~~ 
C)

5 5 - 5 - I  I I I  - I I I” )
I I l—I I I i l ’ I) I I V I 1 I- I H I-I IIIH )-4 $ ) - I l4 ) S I I - I I--4 5-i H l-4 l- Ia-V H I I- I )-I H I - I F-A - i l-4 I-5 l-5 5-A l-_i I I I HINHI-C)--.C4 I-4 1-4 A-l a-l 4-, I ~~~

- I: ~i - 1’

~ 
: : : r 5

I 3: I a-A 10 ‘0 ‘0 ‘0 ‘0 ‘0 ‘01.-a 153 I ~J S’S - 3- 3- 3 - I —  3- 5 I’S S-I ~
— 10 a— 01 •~ (14 .— I 5 5 a 0 ’ ’  . ‘ 01 015 7)- I

I I • ) I 1 I T ~~~~~-1. S - H- I B I S -  5~~ S- 0 . •—~~~ I
— I (‘I I 5 - 1 - l i t  - I
a,a~ I I S O - I  - - 5 1 I I I

I 2 5 5  I I I I I I I  I I
5$ - I I - I I I - - 5 5 1 1  5
V~ I I—I $ I) l - I I-i a-V I-4 l--I l-I I--I a--$ I--I l-4 I )-l T-S IN I-IHINI-5 A-1l-V T4 I--4 I E H I N  T-S I-IH.1--l a--15-( 5--I l--5 I I l I N E S  ‘1I-4 )-I I--S T-4 I-SISI--I l-t )-I I -

I I - I 5 - I - I I )  I ~~LI I - I Ill 153 OlIN 11) 10 113 1/I 10 I/I 525 5 573 11)1/1.0 II) IA I/l ‘0 0 3 0 31 0  5 /5 10 IfS I/I .1110 10 0 Il l l O t S  I I I I’S r~ In C) an afS (Cl 11) 10 10 115 I
I - a I--- F - I — I--r- I— a— T-- r - -r- - I - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I t — ( - r- N t--- r- r-- I - -- r- t--- r-- I )  a I - I- - I - - r- T-- r - t - r--- T--- , - - I-- I
I I ‘C. C. ‘C- ‘C, C- ‘C. ‘-. C, C, ~~~~~ I ~~ C- C- C. C- C- C. C. ‘.. ‘C. C, I C- C. C- C. C. C- C. C, C- ‘C, 1,. I I I ‘— ~—, ‘— ‘—. ~— ~“ ~

f- ‘-, ‘-., —C -
~ $

r e I ( 1 I N I N ( N I N ( N C- JIN rI )N T’-1 I T S I N I - 1 ( N C s r ’ J f l I N r ,r-C)N I n n r C aN r-.r.aN(-.n.-s n  I I I r-. l--. r-) rs rl C-I c-l i s a - s r - s -s I~~ —s
- I - 5 0 0 CS 0 0 0 C) 0 1.) 0 0 I C) 0 0 /) C) 0 0 0 0 0 0 $ 0 0 0 0 0 0 0 0 0 C) 0 I ) I C) C) C) 005-) 1 ) 1 )  0 (11 I ’ S  I I

5 C- ‘~. C- - C, C- C- C. ‘C, ~~ C- C- I ~ ‘C. ‘-~ C. C. ‘C ‘C. ‘C C.~ C. C. I C. C- ‘C ‘C C- C. C- ‘C C. ‘C C, I I I ‘C ‘C C. C, ‘C ‘C - 
‘C ‘C. C. C.

I IO O C) O CI O C)0000 I O C ) t ) 0O C ) 0 0 0 00  I 0 0 0 0 00 0 0 0 . T hCl I I I f l, )C C O C ) f l Ia 0 0 0 0  I
I Z I  a- ’ ’ - 1 ’— ’-

~~~
•— ’ — — a -

~~~~
—
~~

— - 1 — r —  — —
~~ — — — ~~~~~~~~ a- ) I I  l- — .-— . . — a — a-— I

• ~ o p .  - s I i 1 ) 1  - p.
(I’ - I I—I l l  II - I I I - - 5 - )  - 5 ~~I.) I I-S - I I 5 I I I I - I UI I I a - I—S I I .,.4
$5 .5 .5.~~ I I ~ I I - I N - I - I - I  - - I—l I-
El I 1 -5 0 1  I I I 1 I 3 : 5 - I - I  I
5.1 I I-’l CS’I - - I I I I I  I I I I I  - 5
5.5 I~~I.I I.. I  I 1 5 I I - F - I l l  5 . - I
54 5 I—a CI  - I a (‘S I’S CS ./5 ‘ O F - - U I  Cl 0 • I C5 50 CI II’) 0 1” 01 )~v) 0 a - .  $ 1- C-I I’S Li 4010 (0 - - a- 1 I $ I - C-S C) S at) ‘0~~ (0 IS- C- - - C - I
54 . I-sal - )a-_ .a. I 

- !‘ “— I - la-~~. 2 5 - 1 . 5 • 5  - ‘.- ‘ . - ‘ I
I la I - 5 - I I I  ( I - 5

5-s - I la) I a-S IN a-I IN C’S C’S IN C-J r-I IN I a- CI IN 1.1 (‘5 C-I VS )N IN I -a IN- I ‘N C-I fl-I (-4 (-5 IN IN (N . (‘1 .3 5 5 - I a- Cs C--a (-5 IN C-S IN IN IN IN - I IC) 5 (3 I I.) I) LI .1 I.) at J I.. C 1 .  I :  I I. . I-) a l i i i  I I  I. -1 I_ i l l  I LI 1- I I- . II - 1 - —‘ I a a I~ 14 ~I —_ I -  .1 “_ 1. ..( TO I.. .4 I
25 I~ I-S-Il/i Vl Ifl tfl I.a afl I,, Ifl a - f l f l a - I  I a n us .n )n Ln ,-, ,S In I.,-n .n 5 1 5  I h ) I f l Ir tfl ) f l C ) ( I  ‘ C I~ I I  I . l ’ - I I f l’ I T  (‘S li t i a .  I

I I ‘0.r .1 .( —a .c .5.1., )— l —5 ..i .C .c —r .0.- I I S  _~~_: 0 _/ .T r .((, I l l  ‘0
(IS 5~ - I I .a L ) 0 I I ) _ J t J U a I t ’ c , La I ta U (,( ) t , ( ,a , O I - t a ,  ( a ) . ) , , ) (‘ 1,0 ( 5  ( 1 1 , 5 - i l l I I I _ . (a ) ) ( i(, ) , I , a a  1 ) 1 ) 1 ) 1 . 1
01 5 1 1 . 1 1 , 1 - - l . a . , .  I a . , , , )  $
I’ I I10t’S tC- Ul T)I II L ISOIT I/I $ , f l &) Ifl hl IO ), L # ) 1 0 u , f l )fl S ,, u2 V, CI I0 ( f l h/S )f l I - I l - } i I I I  ) 1 ) 1 n v l  ‘ - l I v i n ;  I
.7 . 5 l l - a l . 5 - I - i Ia-fr. -Is A - . - I , , $ . 1 . - I  I , I 1 . - a . S a t . A. ,. I . , I s t - ,  I. I’ l . I I’ U - . * . l - I . I . S - l  -s l - . ) - F- ) .~~~. II
P. I I - - I I I I I  I
- I  I 5 4 4 I - I H I N I - a I U I a - - S a ) l - lH I - , I Il - - I . I I S I N O -a - l .-s a - S I , p-. ,- , - I , s.-I. I •-5 F1 a 1 1 1 4 0 1 4 1 - S I I I N ,. ,  I1 - ) - I - 5 I 1 )-S l- S a-a l-a ,I a . ,) I-S l i l a , .  I =
~ ~I I I - 

- 
5 - - . 5 .  I 1-

(5 1 1 1  . 5  - I I  - - ‘ I  - - I I - I l I I  -~~I~ I—I 1 - I I  5 - - I I I I  I 5
55 I c1a a . ’ - I u  I I I )  - I I I ) ,  I - I - a  I I .)
CI I . ’ . I II I - I l-I - I I I  I I I ,-) -
I-. I a)) .4 I 55 - I 

~ F- 
- 5 I~ 

- I I I I 5 . - - I
I - C I I PS 1 1 1 - 1  - I L )  I I  $ 0 5  - )

5 a  5 1 . 0  1 .- S I l . a  5 . - I  1 1 1 . 1  I I
Ii) I t O  ‘ 5 1 0  I an 5 . -S - 1 1 1 . -s I(3 $ J  ‘I - I I  I - ‘ A  I I I  5I - I  $ I a I )  - -I.S I ,  5 - - I I  - ‘ I  - I - I - I  I
~~ $ 1.1 ) I 5 5 - I I S a !

1 1 1 ) 1 1 5 )  - - I I .  I a - ) !  1 ) 1 6 .  - 1
a,aS Ii. 1 . 1  I T .  I 1.7 I I I )’  I5 , , ., I I a  - I : .  I I I  I - I  5 ’ ’  - s
.( ) I~~~-’ I ) I ) O  - I a _ .  I I I )  5 $  $~~~ s - l14 1 5 1  

~~~ -~I - 
11(

1
1 -

~~~~~~ I ‘ :~
‘

4—16 

-~~~~~~~~ -~~~~~~~~- - --.~- ,_--_--~~~~~~~~- ------ - - . _



- - - ‘ “  — — “ - 5- ) (  ‘_ ‘___“_ _‘_‘~~‘‘  —V -- ~~ -a_ 
~~~~~ — — — — -

I 115 11 1 I I - - I

L ~~~~~~ L10

~~~~~~~
-HJ

~~~~~~~~~~~~~~ 
~~~

5 54 00  I (30 - - I (00
‘I l- .00 - .0 10 - plo 

- 0 1 0
- I 54 (0 0..~ .4 I -~ - (0 (0 .4 5

5 5.1 I (0 XI) 54 - 541 010 (00 0 10  I’ 54
II - - LI 541 U (0 0 01 0 01 I_S 54 I_S 54 0 o, Ca a4 5)
‘I I~ 1 54 25 - I Sa 0 5. Q 25 .4 S-_ 05 7, .0 - I.. 0 5. 1)
I - 0154~ ‘401 I~s - 5. 5405 I a,. I.,1 5 fl I 54 Al 54 54 (01 54 54 - .54 01 Cc 54 4.)1 5  (5 - 54 54 0 5.) 014 54 54 54 13 (4 0/4

‘ I  1.1 - - 5.1 115 ‘P. P. I S 1,1 (.5 I -I’. P.I U - 5-3 (‘I 5.) (IS 54 ‘4 - 05 .7 (4 III (4 54 5.5 III ~. 01 P. 1011 0 15 .3 15.5 0 I_I OI l) 15 .3 15 .3 15 .5 0 I) 0 Ia )
( 55  01 01.7 01 .4 0 (II 01’S .001 54.1 7 , 0 1  CS AS O IlS

~~ 
:::- 

~~ 
-

5.5-I I - I I I - -

P1
IF -
I (A - I 0

— - 54 I- A Is 
I 

1 01 
- 

- 

1 
f 

II I
u - 0 1.— - 0
U (I I CI - > I - 

- 
- -I-S - l  - -s Q- (‘S - 

- 

0
“I IS I 10! 14 

~ - I
.5 II IN - o I I 0 - I
UI I I  I I I I I
~-‘ I 5

~~~~~ 
01 ci - —,

I I - I 14 - - I
(4 II - 1 0 54 - - 1013 -a-i I (.1 1 011 r I - -o i 5413 1 I -o -I I I I
C) I I — . 7 I
a: - (a —. s- .0 - a- -

l I D 01 (4 I I

~~ ~~~~~i
I

....

I
a- ,~ - -s

I.) I I - --S — I I.- .0
55 I 5 - I - .4 I p~~ - 0)

I .4 5 UI - I .-. I 154 ” I -A. - I I Sea- H 54 17 I5 0. • 5-I I’ - A - -- - - I, 54 1.-I (IA . (‘I IA I 5.5 -A 5 I’S - 5 I I - 4.” . . - IS . .55 Ia I .s—II I - ‘ 5 4 5.) I 5’.
. ,_ -_ - - S I ..,. •5-5 s O P S a a II.) , 0. I a - .0.UI -

U - I - 5-’ 15 54 I S’S ‘S. 0 I
I’S - I _ C S I • 5•5~ ~~~~ •~~~~54 • 5 3(15-S - - 5- I - -
l’s 1 5 01 I UI - 54 0 I 5) 5-5 01 5-~ IV - I 01 ~~~~B X I 55- 5 ! . - .‘I.. - .51,5 5 (4 1))~~~l’I 5 . 0

(3 .4 ~$ ~ ~~ ~ ~_ I I 01 111)54 /)
S I-s I (.5 - H A). - • 5-4 - 00 taO a II 01 15 4 • 154

H ‘at 54 I .0 (.5 5.1 I 54 I (5. I 0 I55 4 1 , 5 4 5 4 , . 54 I . 45.1 .. .‘k.
A’!)s 7 1 0 0 IS. - I
P4 — 5 . 5 5 0 -•5. . 5-4
.5 1.1 1 5 1 5 5 4

- IS 0 1 I A .
5.5 15$ I-S I -(3 ~I I - . — -
.7 -0 I I
54 5-5 I I 01
5.5 II I

• II
o A I I

-
~~~ I~::~~ i: :~ : :~~I : ~ ~ ~:15 (S •I~~~ . 55 10 0I~ S - f’S I’- 0. s— r.SN 

~~~~~ I(0 0. 0 I (4 (4 Cl II 5 5 I N  aN IN 3- 3- I 3- -, .1 15 40

I i

4—1 7

--

~

-~~ - - ~~~~~~~ - --~~~--- -- ‘ - - -~~~~~~ - ~~~-~~~~~~~ - -~~~~~~~~

I f A S P I A-S I’S 5-I U I S 15
1
1 5

N m sin ‘a r— w ., - - IN inN f l IN (‘5 (‘4 (‘S IN IN IN IN

(0 01(0 01(0 0101 0101X X 5-5 5-5 5-5 5-. 5 . A s . I-. Is I’ I’ I’ I’
.1 .4 .41.1 .0 -4 .0 .0 .4 ‘4 at55. 0. 0.0. 0. 0. 15. 0. C,. 0, 0 .0,540. • l~~I p a , a 1 1 I I

~~~~
—

~~~~~~ I I I  i _
~~I -

-

I -

-

I I - I
I I p - I 0I

- I
I I I I - 1 I

I I -
c-i

I
I H -A

-
- I~~~ -

I

- -
-s

C’S I I
- I

-

-

I~~~~~ - -
- o I I I

-
-

-
I

-0 (5 4 I - -
‘.4

54
10

54
I

I ll
5-~ I .- - -

-~~
-

— I - $4* - — 0 0 - 0 III ‘I -
- - 14 I-) 5-1 - I-

5’ I -o - I ~-s
- 14 14 ‘.5 5’ II-S :.s.. 5 . - I ’ 0 .0) I) -I 54. 5-5

- 54 - I - .7 .4 .4 54 ‘ -+4 54 • • (5 - a - - . 1) 514 13.
~, 54 0. 0. 0. 54 5 -5-I S. , - - g.~ - - . I - - $ 50 IN ‘0- ‘ a-S. H I-. 5-. 5- , I.. I In an e.

I I - . 5-’ •- ‘ r ’” 1 • 5-S - •
-.I

—.~ ~~~ —

~~

-

I -

-
-I 1 -

I

-

I

-

14 14-
- I I - I S

- I - II I 01 (1 Li
1.1.5 (4

- — — - a-— 6 . 1,5 4)— (‘I IN- p I’ — - — - 0

~~~ 

P 

: 
:1 ~ 

-

0 - I ‘~l aS) 5’- a-- sl a. 5 ,  15.54ilfI
I
IA

j

10 I I - 
0 6 1

4—18 



I 5 4 1  I I -( SI  - - - I II 
I S A -  II ~~~~ - - -

I ~~ IN - 
an 0 

- 
If) 

- (-4

I - I I I I -- I - - - - I II ‘~~ 
- - - I I

- I I -
- I  -

- .‘ - - I I I5-- I I I- I  54 1 30  - I I I I - -I 5 I. O I I - I I
I 5 ~ .4 01 54 I 54 01 01 (0 1 (0- I SI 7, 01 0 01 1)4 - It I) 01 0 01 0 = 1) It S I 01 (3I 05 4  u ’. ‘IZI (.1 25 UX  1)54 1)01. (5~4I U 2 5

• S’S I. 0 . I 7- .‘$ 7, C l  5-1 -5~ 54 ca  Ct p .. 3-, ‘CI 54 5. I 5415. .054 .0 (4 5401 - —4 54 .7 IC C (4 54a I- 15 .7 0% 54 55 - p— C Dl 54 - A. UI cc 01 0. SI 0, 55( 5  5 01) 54 0% I s 5 55 I 115 Sal S5II 55 5. 5-I S~ 
I 1.1 l.a - 5-I I,I 1,1 5.1I I U o. 4 5-1 lIt 14 (151 14 40 5-5 (II S~I 15) (4 Il) $4 In $4 40 -a 5 0 0 U n .1 ~S 4) (5 .5 15 .4 15 .4 1-’ .4 0) .4 1) s-I

01 

5 4 4  

~~~~~~~~~ 

~~~~~~~~~~

~~ ! ‘ H I : I -  I !  i f  I I - -

4—19



-w

I II I - I_ II •  1 I j I
5(5 0 0515 - I 5%- ‘01 If 115 515 5 A1I I

C - I t~ .1 0, 54 5

5-S 5-a- IS A. - ~-S S. S- I.. .4 ~ I-a~5-c :
H 5 - 5  I

‘:
~ x ::

I-a I4 54 5-5 1’S I.. I-S I-s 5-5 5-5 15 1-, 5
1.4.7 .~ .4 54.4 .4-54 5 4 5 4  .4.4 5
~~ 5.- 0.4. s-s. D. P.S. 5.0. P.0..I

5 5  I I  I I I  5 5  5 5  I I  I
O 01 5 - 0  .0 (3 13 0 0 III 0. 515 5’ -O 0., 01 5 5 .0 0. (5 13 ~ I

••  01* 5 1  4 0  I
..- .-.- ... .. . -.r

I’
— I
I I -

- 0
5 I 0
~ I I a-’

0 I

- 

14I -
54 I -

I - I ‘5-4

I II f  ~~ ~~I
5-I I Ii

- IN 1I o S C I  ( I
54 ~~~0 I

o 0 I I0 I 
- SIt I I

0 0 0 •I - I I I
5-) a a I II 0 i.

• - I III -
o 14 - 0  I -  - IllS - I

S - ala I I I 1.11 .5
— 1 ’  a ,. I - I l

I I p— — - -~~ I
Dl C) I I ~ ‘ I

I I  .1 ~~S1) ~~. 5 1 5 . I n  1. - 15 - l
- I - 4’) ‘0. I IA. a l

o s 5-5 1 ‘5-’ l~~ ‘)-I l) • 1 • 0. ~~U S’S - 15 - (4 5.. 14 U - I -I. - - - IC C) .1-4 A ’  ~ I - a  s— s i-’
A. I I.. - 5-. 0 ( I’. I (‘I I’S (

(4 

::

I

~~~~ 
~~

~;
:~~~

~

I I — I
—

~ I

4—20

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--

r~

~
--

~
-

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

4.L2 JAVS Self—Tests

JAVS self—tests demonstrated the capabilities of JAVS as a testing tool
on a large (over 30,000 statements), complex program which had been previously
subjected to a comprehensive set of test data using traditional test tech-
niques. The test teams included personnel who designed and imp lemented a
large portion of the JAVS software. They were familiar with both its
functional specifications and its software organization. In addition , they
had designed the test data during the software implementation activity.

JAVS software is a hi ghly modular collection of hundreds of individual
procedures , organized functionally into components. Several components are
used together in each standard processing step. Table 4.1 shows the relation
between the twelve components and the six processing steps. Each component ’s

TABLE 4.1

SUMMARY OF JAV S COMPONENTS USED IN STANDARD PROCESSING STEPS

bU C

‘a-A 5._S U)
U) 5 CU
~ U) U) I-. 01
U) Ls U) CU >s
~~4 A l 4 4 Q 4._S O. s--A
C) 1 > C 0 S Q ) C C U
~ o s 5 -  s u c c
z ~~~~~~~~ lat Os cU <

~~~~~~~ E - ns ~
o Q ~~~~14

~~~~~ E-.
CI~~~~~~~’j ~ f~~~O, ”~
~~~~~~~~~~~~~ 

Lt ’.5~~~Z

JAVS Component ~~~~~~‘~~~~
5- <

~~~
<

JAVS—O Command & Control S S S S • S •
JAVS—1 Storage Manager S • S • I S S

JAVS—2 Primary Module Analysis

JAVS—3 Secondary Module Analysis

JAVS—4 Structural Anal ysis I

JAyS—S Instrumentation

JAVS—6 Data Collection and Reduction S

JAVS—7 Test Case Assistance I

JAyS—B Segment Analysis

JAVS—9 Program Modification Analysis •
JAVS-lO Data Base Services 5 5 • • • • 5

JAVS—ll Support Subroutines • 5 • S I I I 1

4—21

- - —a - —’- - -~~



interfaces with the other components are specif ied in its COMPOOL as pro-
cedure declarations; all inter—component communication of data space is
passed through formal parameter lists. Within a component , the communica tion
of data space includes both formal parameter lists and component—wide data
specified by the COMPOOL in labeled common blocks. Data communicated between
JAVS standard processing steps is wholly contained within the data base
library, which resides on auxiliary storage.

In conducting the self—test portion of the acceptance tests , the
following guidelines were used :

1. Execute 85% of the executable JAVS source code , exc lud ing calls
to error routines , with a minimal number of test cases. Note
that the coverage requirement was given in terms of statements
rather than DD—paths .

2. Utilize collateral testing whenever possible to minimize the
resources required to run tests and analyze the results.

Selecting Test Data. Extensive test data was available to the tt~st
team from the normal implementation tests. This test data included a fairly
short dummy program , TESTALL , which contains examp les of mos t legal JOVIAL
constructs (i.e., symbol type , statement type , control structure type , and
module type) analyzed by JAyS . TESTALL was designed spec if icall y for the
functional demonst ra t ion  port ion  of the JAVS acceptance tests. Since a
large portion of JAVS software is itself functionally related to the JOVIAL
construc ts , TESTALL was an obvious choice for the test data for initial test
execution .

Testing Procedure. Testing all JAVS software at once was impractical
because of its size (in the instrumented form produced by INSTRUMENT). Since
JAVS is a collection of twelve well—defined components , several of which are
executed during each processing step, each component was separa tely anal yzed
by BASIC and STRUCTURAL , then instrumented by INSTRUMENT . During Test
Execution , the remaining uninstrumented components were loaded as ex te rna ls1
Thus each test executed all of JAyS , but only one or two components at a t ime
were instrumented . In some cases, subcomponents were defined and instru-
mented separa tely. Test Execution took the form of retrieving the instru-
mented component, satisfying externals from the remaining uninstrumented
JAVS components , and executing an appropriate processing step on TESTALL .
For example , to test the JAVS—2 component , the processing step executed was
BASIC , since BASIC uses components JAVS—O , JAVS—l , JAVS—2 , JAVS—lO , and
JAVS—ll. The ANALYZER module coverage reports dealt only with the modules
in JAVS—2 which were instrumented .

Each component was analyzed in this manner. The well—defined structure
of the JAVS software , coup led with a fairly exhaustive JOViAL test case ,
provided better than the required 85% statement coverage , and a DD—path
coverage of 70%, in two tes t runs (only one test run for all components ,
except certain subcomponents of JAVS—2). The detailed results of the JAVS
self—tests are inc luded in Ref. 7.

4—22 



— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The high coverage with a single set of test data is attributed to
several factors: the design of JAVS software c’. a set of functionally
related components, the use of structured programming in imp lemen ting the
software (except for JAVS—2), the availability of a well—designed set of
test data , and the test team ’s int imate knowledge of the software and its
usage .

Automated Documentation. In addition to satisfying the self—testing
requirements , processing the JAyS components through the JAVS system provided
comprehensive computer documentation of eac i module and component . Computer
documentation consists of module l i s t i ng , module DD— path l i s t ing , module
control—flow picture , component (symbol) cross reference , and component
module—dependence tables. The module—dependence tables were h e l p f u l in
determining subcomponent grouping for JAVS—2 . The cross—reference listings ,
along with the module statement coverage reports , were usef ul for de termining
the second test case tha t was needed for some of the JAVS—2 modules.

In addition, the module dependence summary identified several
superfluous modules which were not called by other modules. This documen-’
tation is both comprehensive and accurate; it has continued to prove its
value in the maintenance of JAVS software during the current contract.

Summary. The JAVS self— tests demonstrated the following :

• Applying JAVS to a large test objec t is feasible. —

• Well—structured software , although large , lends itself well
to AVS test techniques .

• Software implemented to reflect functional requirements achieves
high coverage when the test data covers the func tions. —

• The high—quality documentation produced by JAVS is invaluable
in both testing and maintaining software.

• The test team ’s knowledge of both the design of the software
test object and how to use it , as well as how to use JAVS ,
contributes immeasurably to the success and eff iciency of
testing .

4.2 EVALUATION TESTS

The primary objective of the current contract was to implement a sys—
tematic software test program using JAVS to assist in the testing process.6

The bulk of the effort was spent on testing the COMPOSE subsystem of SAC ’s
Force Management Information System (FMIS), a generalized data management
software system . The general characteristics of FMIS are (1) it is large ,
(2) it is organized into modular componenls , (3) it o p e r a t e s i n t e r a c t i v e ly

through a command language , (4) it m a r i pulates a complex data base , ar -id
(5) i ts code is not s t r uc t u r e d code.

Before testing began , a training course was conducted to acquaint the
test team with JAyS and the testing methodology. Next , a forma l test plan

4—23

--

was prepared which emphasized the evaluation of JAVS by using it to test and
verif y a large , operational software system .

COMPOSE was selected as the test objec t solely because it was a readil y
ava ilable , large , complex program written in JOVIAL J3. COMPOSE is only part
of a very large software system . Although the source code for COMPOSE was
ava ilable , the source code for other parts of the FMIS system was not provided ;
in particular , that for the COMPOOLs which specif y interfaces and define data
struc tures. This lack of comp lete information hampers the testing when the
software utilizes global data for communication between subsystems , as FMIS
does. Furthermore , nothing was known by the test team about the size , struc-
ture, or operational behavior of COMPOSE at the beginning of testing. In
add ition the test team had no actual experience in operating FMIS or in using
its command language and the (supplied) data base .

Prelim inary Testing Procedure. Because COMPOSE has more than the 250
modu les permitt ed for a single JAVS library, it was divided into seven corn—
ponents (w ith minor overlap) , rang ing from 52 to 218 modules in size. Each
component was trea ted as a separa te library , pass ing first through BASIC and
STRUCTURAL , then through ASSIST and DEPENDENCE for documentation reports.
The resul t ing libraries contained a total of 705 invokable modu les and
38 ,734 JOVIAL statements excluding comments.

The size and complex ity of COMPOSE stressed the JAyS syntax analyz er ,
exposed some incompatibilities between the syntax analyzer and the JOCIT
comp iler , violated JAVS size limitations and language usage constraints ,
revealed JOCIT compiler malfunctions in compiling JAVS software , exceeded
external symbol table size limitations for JOCIT compilations , and uncovered
some errors in JAVS code. Concurrent with this effort to build libraries
and document COMPOSE code , procedural techniques in using JAVS were
standardized , processing improvements were made to JAVS software , and errors
in JAVS were corrected .

Selectin_g Test Points. JAVS testing coverage analysis requires th~ user
to identify specific statements which correspond to the beg inning and end of
a test. Proper selection of these test boundary points is based on knowled ge
which relates program behavior to software implementation . Lack of
familiar ity with the COMPOSE software and its behavior by the test team
initially resulted in improper pl~icement of the test points. For a program
which is segmented into memory overlays , logical test points occur C-ft link
load ing events. JAVS documentation of COMPOSE was used to locate the state-
men ts which caused link loading , and appropriate code was added at those
points to capture these events on the test file. Since the test file normally
contains a time—sequence record of program behavior (e.g. , module i n v o c a t i o ns
and returns), selection of appropriate test points was greatly simplified by
analyzing how the link loading events were interspersed with recorded test
events. In this respect , JAVS serves to acquaint the tester with progran
behavior.

Test Environmen t. FMIS normally operates interactively under the time—
sharing facilities of the operating system . The user supplies a data base ,
enters a series of commands to FMTS, and receives responses from FNI S on an
interactive terminal. For test purposes this type of interaction is not

4—24

‘ “~

always possible nor is it necessarily desirable. The overhead of code
expansion through instrumentation , as well as added process ing time , can be
prohib itive under time—sharing constraints. Furthermore , the need to record
and correlate all input data with test results and possibly to duplicate a
test prec isely (e.g., without transmission errors or wrong key strokes)
demands a controlled test environment . For these reasons , COMPOSE was tes ted
in batch mode.

However , the batch mode of operation presented additional problems .
Due to lack of familiarity of the test team with preparing input commands
f or FMIS, coupled with the self—protection of the software against erroneous
data , it was difficult to prepare data which resulted in completed tests.
As a result , test data was first designed , executed with the normal inter-
active version of COMPOSE, then later entered into the test version in batch
mode.

Test Procedure and Results. The software on each library which was
tested processes a specific subset of FMIS commands. Test data was prepared
and test coverage reports were examined to determine test ng targets:
modules with little or no coverage and key DD—pa ths which were not exercised .
DD—pa th testing targets were determined according to several criteria : deep
nesting level in the control structure , as far into the code sequence as
possible , and (as frequently was the case in testing COMPOSE) identification
of variables in the pred icate of untested DD—paths which are known to be
d irectly affected by the input data .

Generating new test cases to achieve better coverage can be very
difficult when the test program is large and complex . When the input data
undergoes subs tantial processing by the source code before it enters the
sof tware component being tes ted , the task is even harder. For COMPOSE,
this was further complicated since many of the variables found to affect
DD—path testing targets are global variables which can be modified outside
of the test component . The lack of complete documentation (e.g., COMPOOL
source code) adds to the problem . In testing COMPOSE under these conditions ,
the most effective testing assistance was provided by the combination of the
JAVS test analysis reports which show the source code executed ; the JAVS
sym bol cross—reference report showing library—wide references; and the SAC
documentation manual describing the func t ions of the modules. With this
procedure the initial tests with two components achieved 29% and 48% DD—path
coverage . Modifying the input and retesting these two components improved
the coverages to 41% and 54% respectively. By analyzing post—test reports

together with the SAC documentation , many of the untested DD—paths were
shown to handle error conditions , boundary conditions , improbable input
combinations , or a more complex data base .

Many errors in the COMPOSE maintenance manual (mostl y in inrermodule
dependencies) were iden tified by comparing the JAVS—processed documentation

4—25


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - - -~~~~- - -
~~~~~~~

-
~~~~~~~~~~~~~~~

of the actual software to that in the maintenance manual. The availability
of high—quality, accura te , up—to—date documentation significantly improves
the effic iency of both testing and maintenance.

Summary . COMPOSE testing emphasized the problems associated with
bottom—up and top—down system testing strategies. Bottom—up testing gen-
erally requires special testing environments. Since most variables in
COMPOSE are defined in the COMPOOLs , and the COMPOOL source text was not avail-
able , it was not possible to artifically create a correct test environment.

Top—down testing progresses from the modules which are highest in the
invocation structure to those lowest in the invocation structure for the
complete software system. A natural secondary progression is in order of
module execution . Since none of the source code for the interface segments
was available for either testing or documentation , the communication paths
between much of the tested code and the input of data were blocked .

Although the retesting process proved difficult , the JAVS execution
tracing and test coverage reports provided an accurate statement of progr am
behavior. This output , together with the JAVS documentation reports , grea tly
accelera ted the tes t team ’s learning about the software test object.

To evaluate JAVS ’s contribution to software maintenance, typical
maintenance problems were posed : for example, the problem of modifying
the effect of a particular command (e.g., PROOF). The SAC documentation
was used to identify the module whose function it was to process the command ,
the JAVS intermodule dependence reports identified the modules directly
affected (by invocation) by the proposed change , and the cross—reference
reports on the use of variables identified the modules indirectly a f f e c ted
(b y commonality of reference to variables). The tester , using the JAVS
repor ts alone, qu ickly and easily identified the code requiring change and
determined the extent of affected modules.

4—26

— ~~~~~~~r-7- _ : - -



_ -- ---~~~~~ -~~ --~~~---~~~~~~- P- - - ~~~~~~~~~~~~~~~~~~~~~~~~ 

5 APPLICATION OF SYSTEMATIC TESTING METHODOLOGY

Without an AVS, testing has suffered from lack of formalized , sys tematic ,
enforceable techniques. Testing with an AVS not only offers an accurate means
of determining exactly what portions of the software have been exercised , but
also assists in the preparation of test data. These capabilities greatly
improve the effectiveness of testing. Side benefits of an AVS are automated ,
high—quality , accurate documentation of computer programs ; reports that are
useful for code optimization ; and dynamic testing capability with embedded
assertion statements for expected software behavior .

Previous sections have presented an overview of the testing methodology ,
the capabilities of one AVS implementation (JAyS) , and ac tual tes ting
experience with JAyS. This section considers the general role of an AVS in
applying the testing methodology and discusses practical techniques for
particular situations.

5.1 ROLE OF THE AVS

The concepts implemented in JAVS address the basic problem of assembling
systems of hardware and software to achieve some desired behavior. Software
designed from specifications usually exhibits behavior not included in the
specification. The specified behavior may be acceptable (i.e., what was
desired) or unacceptable (i.e., not desired because of unforeseen consequences
of the system’s behaving as specified). The unspecified behavior may be
acceptable (i.e., fortuitously providing a capability not included in the
specification) or unacceptable.

Traditionally an attempt is made to map this total system behavior by
implementing the specification , then tes ting to es tablish the correc tness of
the implementation, as well as to identify unacceptable behavior for subsequent
correction.

The process of ultimately achieving acceptable behavior in a software
system can be divided into two approaches: a t tempt ing  to build software of
inherently high quality, and attempting to identify failure by testing the
product at various stages. Figure 5.1 shows a few of the approaches that are
used and proposed for improving software quality and arranges them according
to where they fall with respect to synthesis and analysis (the two overlap
depending on how they are applied). The ~pproaches are also arranged in order
of increasing time (i.e., increas ing collective experience in building software).

The bold arrows show the relationships of the JOVIAL Automated Verification
System to predecessor approaches . Figure 5.1 also shows how the other approaches
relate to each other and to the concep t of an advanced automated verif icat ion
system .

Figure 5.2 shows a d iagrammatic relationship of a tester to the test objects
in the unaided testing process. This process , while imperfect and highly dependent
on the skill of the tester , nonetheless is the experience base on which “better ”
approaches should build .

5—1 

~~~~~~~ --- -~~~~~~~~~--~~ - -~~~~~~~~~~~~~~~~~~~~~~
-
~~~
- - --



~

SYNTHESIS ANALYSIS
(BUILD IN QUALITY) (TEST OUT FAILURE)

— FUNCTIONAL — STRESS ‘?‘

~ TESTING TESTING <

HIGH LEVEL COMPILE T~~~~ i
~ LANGUAGES DIAGNOSTICS

CODING
STANDARDS RUN TIME STRUCTURE

\ DEBUGGING TEST BASED
REPORT S ~NAGEMENT TESTING

STRUCTID ~~~~~~~~~~~~~~~~~~~~~~~~~ \ \ /
PROGRAMMING AVS_

I AUTOMATIC
VERIFICATION

PROGRAMMING PROVING TESTING

Figure 5.1. Approaches to Achieving Quality Sof tware

5—2

_ _ _ _ _ _ _ _



‘r”
t

~~~~ ~

-- -—---—.—----—-.——,—-.- - — .-- ---

~

-- -

~~~~~~~~~~ 

— ----- -- --—-----.

~

.---.---.-.- - -—--- --- - ---- -,-

~

--

~~~~

,---- ——--—----—-—---

~~~~~~~~~~~~~~~~~~~~~~~~~ 
ACCEPTANCE 1

L~~~
RIA

TESTER
SOURCE CODE

I
TEST DATA 

~

Figure 5.2. Unaided Software Analysis and Testing

The tester, by looking at test results compared with acceptance criteria
dei lived from the specification , evaluates quality of performance and the degree
to which the specified behavior has been explored . By some more or less intui-
tive process , which probably entails examining the source code as well , the
tester generates new test data to further explore system behavior .

Depending on a number of factors (frequently exhaustion of the test
budget is the sole factor) a decision is made to terminate testing. If
resources permit and the tester is clever , much of the total system behavior
will be exposed , although in general it will not be known how much. In parti-
cular there may be little or no attempt to explore unspecified behavior.

Figure 5.3 illustrates the role of JAVS in software analysis and testing.
The data base stores the source text being tested and the tables used in the
analysis and repor t generation .

JAVS augments the testing process in the following ways:

• By automaticaiiy inserting code to collect data on control flow , a record
of the portions of code that have been exercised is captured dutf’i~ testing .
(See (1) in Fig. 5.3).

5—3



-~ - -— -~ - --~

~~~~~FIC~~~~
J

_ _

~~~~~~ EPT ANC~
J

______________ 
(5)

I ( DATA i r~~~ \
~~~~ BASE ~~ /[~~~~~~~SIS

PROGRAFIIER

SOURCE TEST
CODE* JAVS ANALYSIS TESTE

(4)

(1) I TEST cAS E~ 1iI
(INSTRUMENTED ASSISTANCE

SOURCE CO DE** ______

(2)

DATA EXECUTION

FLOW
~~~~~ULTS***

*INCLUDES COMPUTATION DIRECTIVES
**C~ 4T AINS EXP ANSIO N OF DIRECT IV ES AS WEL L AS STRUCTURAL INSTRUMENTATION PROBES

***NO~~~L PROGRAM OUTPUT IN AUDITION TO RESULTS OF EXECUTION OF DIRECTIVES

Figure 5.3. Software Analysis and Testing Augmented by JAV S

5—4



• The status of selected variables and conditions is produced from expan-
sion of the JAVS computation directives manually inserted by the user.
(See (2) in Fig. 5.3.)

• Subsequent test analysis of the control flow data collected from the
instrumented code exposes code that has not been exercised . (See (3) in
Fig. 5.3.)

• Test case assistance reports aid in generating test cases to exercise
untested code. (See (4) in Fig. 5.3.)

• Static analysis aids the test case generation process for both single—
module and system—wide testing. (See (5) in Fig. 5.3.)

5.1.1 Relation Between Software Testing and Software Validation

Figure 5.4 describes the relationship between software testing and sof t—
ware validation. The ideal specification impler’entation would be achieved by
automatic conversion of specifications to software, with the process validated
by an alternate mapping of the software back to the specifications in a way
that exposes not only the failure to properly implement specifications but
also the introduction of spurious behavior in the software implementation.

PHASE III:
TEST I I

I SYSTEM I ANALYS IS I FUNCTIONAL
I FUNCTIONAL TESTCASE
I SPECIFICATIONS SET I
L—r _____-_J INTENDED

FUN CTI ON
(PROBLEM

SOFTWARE DEPENDENT)
IMPLEMENTATION PHASE II:

TEST DATA
VAL IDATION 1 SELECT iON

~INDEPENDENT )

SYNTHESIS OF ANALYSIS
SOFTWARE OF SOFTWARE

Figure 5.4. Software Testing and Validation

5—5 

-- -~~~
--

~~~~~~~-~~~~~~~~~~~~ --~~~~~~

~~-- - -- -- -- ~~~~~~ - - -

Neither of these processes is realizable today . Software implementation is
largely a manual process. JAyS, however, provides automated tools to assist
in the software validation process. This activity divides into three phases:

• Phase I: Structural Test Case Identification. The software is analyzed
for specific kinds of information that yield a collection of structural
tests.

• Phase II: Test Data Selection. Supplying spec ific input values for a
structural test conver ts it to a functional test.

• Phase I I I : Test Analysis. The set of func tional tes t cases for the
sof tware is then analyzed for its relationship to the System Specifi—
cations.

JAVS performs analysis functions needed in Phases I and II of the process.

The bridge between functional test case sets (the outcome of Phase II)
and the behavior these func t ional tes ts evoke from the sof tware sys tem is
called testing verification, shown in Fig. 5.4 as a diagonal line. Testing
verif icat ion binds the problem—dependent and problem—independent aspects of
the process together by providing the means to observe the ac tual behavior
of a functional test case set derived purely from structural analysis. In
addition, these executions of the software provide the measures of testing
coverage that are necessary for subsequent application of the testing methodology .
If the actual behavior of the sof tware sys tem differs in any way f r om wha t is
expected during testing verification , then one has located either a fault in
the software or a fault .n the functional specification . Thus, testing veri-
fication provides a useful approximation to comprehensive test analysis
(Phase III).

5.1.2 Overview of Testing

Software system testing is organized according to two hierarchies : the
invocation structure and the decision structure. System—level testing is
performed primarily in terms of the invocation structure of the software
system: single—module testing is based wholly on the decision structure .
Systematically testing a software system requires judiciously chosen use of
the two distinct tes ting disciplines:

1. Testing of single modules , regardless of where they lie in the
invocat ion s truc ture , using the properti es of the module ’s dec ision
structure.

2. Testing of components and subsystems , regard l ess of where they lie
in the decision structure , based on their positions within the
invocation structure. This form of testing deals with collections
of modules which invoke one another , but considers the actions of
all but the topmost module w i t h i n any component as primitive
act ivi t ies, to be tes ted according to (1) .

5—6

The selection between (1) and (2) is based , at leas t in par t , on meas uring the
level of testing coverage achieved as testing proceeds.

In either case, the software must first be prepared for testing (e.g.,
analyzed for its structural properties and instrumented for testing). This
is done by processing the software through BASIC, STRUCTURAL, and INSTRIJMEN-
TATION (see Sec. 3). The resulting data base contains all information
necessary for subsequent testing activities.

5.2 PRACTICING THE METHODOLOGY

How testing is to be accomplished is determined by answering very
specific questions:

• What is the software test object? (Sec. 5.2.1)

• What are the available resources (e.g., hardware , suppor t sof tware ,
personnel, time , test tools)? (Sec. 5.2.2)

• What are the test goals? (Sec. 5.2.3)

• What procedure will accomplish the goals? (Sec. 5.2.4)

There is no single, general procedure which applies to all testing. Each
particular testing activity is unique and should be analyzed to determine a
suitable procedure. This suggests that the testing process itself consists of
three distinc t phases: (1) identifying the elements of the test activity, (2)
preparing a test plan , and (3) carrying out the planned tests. The remainder
of this sec tion addresses the problem of prac tical application of the testing
methodology .

5.2.1 Software Test Object

The software to be tested is called the software test object. The
characteristics of the software important to AVS—supported testing are
lis ted in Table 5.1. JAVS specifications and processing pertinent to software
characteristics are also shown.

Source Language. The AVS deals with the software test object in source—
language form. This is the form most suitable for AVS—supported testing
because it is the form used to crea te and to modify the software . The AVS
assumes that the source text is free from syntactical errors (i.e., it can be
compiled without syntax—related errors).

Size. An AVS supports testing of both small and large software test
objec ts , consis t ing of a single module or perhaps hundreds of modules , and
to t a l ing from a few s ta tements to tens of thousands . The test object may
consist of one or more compilation units. On a specific computer , an AVS will
be limi ted by the size of the direct—access memory and the size of auxiliary
files.

5—7

TABLE 5.1

CHARACTERISTICS OF SOFTWAR E TEST OBJECT

Software Characteristics JAVS Specifications

1. Source Language JOVIAL/J3 (may have imbedded assembly—
language code)

2. Size Small to large

• Number of modules 1 to 250 per library

• Number of statements Unlimited

• Compilation units Single or multip le

3. Organization

• Complete/incomplete program One or more START—TERMS

• Software partitioning Linked or non—linked

• Design Assertion statements, automated documen-
tation, dynamic tes t identification ,
modular , structured for best results

4. Computer System HIS 6180 , CDC 6400 , HIS 6080

5. Support Softweare

• Operating system WWMCCS for HIS 6080 ,
GCOS for HIS 6180 , GOLETA for CDC 6400

• Communications

• Compiler/assembler JOCIT JOVIAL

• Link loader System loader

• Library JAVS probe routines, sequential file If 0

6. Suitability for Testing

• Design Non—recursive , non—concurrent , non—time-
dependent , direct correspondence to
functional specifications , traceability
of symbols to input , identifiable I/O

• Partitioning Functionally similar components

• Data Initial test case

5—8

Organization. The software test object may be a complete or an incomp l e te
program; it may be organized into one or more subsystems , or mdv be a utilit y
package. If the program is incomplete , test execution will require additional
software, either operational software or special test software , which c~rnibines
with the software test object to result in a complete program . Although th~-
additional sof tware need not be processed by the AVS in s o u r c e — l a n g u a g e t o r n ,
its interfaces with the software test object must be clearl~ and unambigously
defined in order to prepare test data. Some source languages (e.g., JOVIAL ,
Pascal) require formal interface de f in i t ions fo r both data access and module
invocation . The source text for these definitions is es~ entLfl fo r AVS—supported
testing.

For a very large software system consisting of many hundreds of modules ,
it is wise to partition the software into test objects of tractable size.
Normally very large software systems are designed as subsystems .iccording to
some functional criteria. If the subsystems themselves are each a collection
of hierarchically structured related components or modules , this same parti-
tioning may also be suitable for testing purposes. Miscellaneous collections
of low—level utility modules which are invoked throughout the remainder of
the system can be grouped together as a separate subsystem .

In partitioning the software test object, considera tion should also be
given to the resources required to test each partition . Once it is instrumented
the software requires more main memory because of the code expansion due to
the instrumentation, and more computer time because of the overhead of execu-
ting the probes. A further consideration is the execution—time behavior of
the software test object. During test execution it is important to designate
important events (e.g., file activity, link loading, major cycles) which sepa-
rate the test execution into a sequence of individual tests. This permits the
tester to extract more detail from the test results. Candidate events include
the start of an initialization or termination process , the start or conc lusion
of a new tes t case , the change in mode of behavior (e.g., from normal mode to
error mode) , opening or closing of files, memory link loading, and invocation
of other software not being tested .

To properly partition large software test objects, the tester must use
documentation supplied with the software for guidance.* This documentation ,
which may have been manually prepared , more often than not does not accurately
reflec t the current version of the software . The documentation capabilities
of the AVS offer automated assistance in verifyin g the accuracy of the software
documentation . For example , the intermodule dependence reports give a concise
picture of the interface of one set of modules to all referenced modules.
Trial partitions of the software may be defined by the user , and verified vith
these reports from the AVS. If the software is too large to be processed by
the AVS as a single unit , ini tial partitioning must be based on the documenta—
tion supplied .

See Sec. 5.2.4 for par titioning criteria according to software structure .

5—9

- - - — — -~~~~-~~ -~~~~~~ - —— - -~~~~ - - - -~~~-- -~~~ --- -- -- -

Computer System. The computer that the software test object normally
operates in may also be suitable for testing . The computer used during test
execution, however , must have sufficient excess resources to accommodate the
code expansion due to instrumentation and recording of test probe data. The
AVS may , or may not, execute on the same computer as the software under test.
If an intermediate test file is used to record the results of test execution ,
only the AVS data collection routines directly interact with the software test
object during test execution. JAVS requires only the data collection routines
to reside on the same computer as the test object.

Support Software. The software test object may make use of support
software which is not normally considered to be part of the application. For
example, it may execute under the control of an operating system , with or
without the support of communications software (i.e., as a time sharing
application). A compiler (or assembler) is essential to translate source text
into object text . Furthermore, suppor t by a link loader and acce ss to required
library routines are also necessary. For AVS—supported testing, the same
support software is used.

Suitabili ty for Testing. There are additional characteristics of the
software which affect its suitability to AVS—supported testing. These are a
result of assumptions made in the AVS implementation itself. For example , the
current JAVS implementation assumes that the software test object contains no
recursion , has no concurrent paths during execution , and is not time—critical.
Each of these restrictions may be relaxed in other AVS implementations .

Some software design characteristics facilitate AVS—supported testing.
Among these are:

• Highly modular, struc tured code

• Direct correspondence of implemented software to functional speci—
fications

• Localization of code controlling important events in software
behavior (e.g., new tes t case , file I/O , link loading)

• Identifiable module inputs and outputs

• Mnemonic symbol names

• Traceability of symbols to input symbols

AVS—supported testing is hampered if the software test object lacks these , or
if it contains logically unreachable code , uses borrowed code , or bypasses
normal module invocation and return protocol for control transfer.

Software may also be deliberately designed to take advantage of spec i f ic
AVS capabili ties such as the use of imbedded assertion statements for dynamic
checking of expected behavior , automated doc umenta t ion, or program performance
with test point identification .

5—10

5.2.2 Test Resources

The resources available for testing must be identified before an
approach to test ing can be determined. These include the computer resources ,
data for exec ut ing the sof tware , the members of the test team , the AVS capa-
bili ties , and the time within which tes ting mus t be completed.

Computer Resources. All computer resources (both hardware and support
sof tware) used by the software test object during normal execution should be
identified. This information is usually contained in software documentation
or can be extrac ted from sample execution runs. For examp le, for programs
which execute under the control of an operating system , the hardware and
sof tware requirements may be extracted from reports produced by the system
loader and from job control statements. If the program is overlayed (i.e.,
different parts of the program reside in main storage at different times),
then the memory layout of each overlay link is also needed. This mapp ing of
the test software onto the computer is referred to as the execution environment
of the program.

Test Execution replicates normal execution in the sense that the program
reads its own inputs and produces its own outputs . Additional output is captured
from the instrumented program during Test Execution for later analysis by the
AVS. Test Execution differs from normal execution in the following ways:

• Some or all of the program has been instrumented to capture
execution behavior on a test file

• Execution output will include the results of any assertion state—
ments embedded in the source code

• Test case boundaries are identified at particular test points in
the sof tware

• The instrumented code , although logically equivalent to the
uninstrumented code wi th probes added , contains references to AV S
probe routines which are added to the load sequence

• The probe test file is recorded

The major effects from these software perturbations are the increased memory
requirements and execution time due to instrumentation .

In some instances the additional computer resources are sufficient to
preclude t e s t i n g in the normal execu t ion env i ronmen t . O t h e r c o n s i d e r a t i o n s
such as accessibility and operational compatibility with the AVS execution
environment may also indicate a change in execution environment for Test
Execution . For example , the FM1S software (see Sec. 4) normally operates in
a t ime—sharin g mode under the GCOS operating system. The expanded core require-
ments of the instrumented code , together with the need for rap id analysis of
test file data by JAyS , mado it more practical to ti-st I-T’1~ S ~s a multiple—
activity batch job for Test Execution . In this mode the first activity uses
JAVS to instrument the desired component , the next comp iles the instrumented

5—11

:

~

_ _ ______________


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

code , the next loads the test and executes the (partially) i n s t r u m e n t e d  FMIS ,
and the last uses JAV S to analyze the test results.

Operational procedures must be suitably modif ied to accommodate the
necessary changes. For programs which execute under the control of an opera-
t ing sys tem, these modifications include altering the job control language to
provide for compiling instrumented code and merging it with non—instrumented
code , loading the AVS probe routines , and cap turing the tes t f ile for analysis
by the AVS.

Data Requirements. For Test Execution , the software is exercised with
test data in the test environment. This data may be generated specifically
for the AVS—supported test activity, or may be taken from previous execution
of the sof tware , or both. Existing test data as well as res-~lts from tests
unsupported by an AVS can be invaluable to the test process , espec ially if the
tests reflect functional requirements of the software . For examp le , FMIS uses
two types of input data: user commands and a complex data base . In AVS—supported
testing, the data found to have the most direct effect on FMIS program coverage
was the user command data, with the data base of lesser importance. Testing
was conducted with an existing data base , holding that input fixed and altering
only the user command data.

Test Team. Testing requires a test team capable of preparing data ,
making computer runs with the software , and analyzing output produced during
execution tests. In addition , AVS—supported testing requires that the test
team know how (1) to use the AVS capabilities for analyzing the sof tware , (2)
to make suitable modifications for test execution , and (3) to analyze the
combined test results from the software and AVS (i.e., normal output from
the software together with AVS post—test analysis of coverage derived from
software probes). It is important that the test team have more than superficial
knowledge about the software test object. In par ticular , the team must have
specification—level knowledge of functional behavior , at leas t some knowledge
of func tional behavior, at least some knowledge of program structure , and
detailed knowledge of operational requirements.

AVS Capabilities. For effective use of the AVS , the test team must
understand the purpose of each of the AVS processing capabilities and select
those that are applicable at each stage of testing. The AVS can be used to
accelerate testing. For example , if the test team ’s knowledge of the software ’s
structure is deficient due to lack of detailed documentation , prior to actual
testing the AVS documentation capability can derive detailed information about
inter—module dependencies directly from the software . The additional informa—
t ion needed about each module to attach meaning to the invocation st ruc ture
includes each module ’s purpose , its inputs and outputs , and the interpretation
associated with data processed by the module .

5—12

~ 



- - ~~~~~~~~~-—.-..- ~~~ - — -~~~~~-~~~~~~~~~~ --~~ - ~~~-

5.2.3 Test Goals

The overall goal of testing is to improve the quality of software through
t e s t ing  and validation of test  results .  Detailed t e s t ing  goals are direc t ly
related to the type of testing to be done : single—module testing or system—
wide testing. The type of testing, in turn , may depend on the stage of sof tware
development and previous test history of the software test object. It is often
the case that single—module testing is most appropriate during the code develop-
ment phase or whenever a module has been changed or replaced during the maintenance
phase. System—wide testing is applicable whenever collections of modules are
tested (e.g., in software integration and maintenance phases or in top—down
development).

Single—Module Testing. For s ingle—module testing, the testing process
f or comp lete coverage has a single objective : to construct a usefully small
set of test cases which , in aggrega te , cause execution of each DD—path in
the module at least once . Real programs may have DD—paths which cannot be
exerc ised , no matter what input values are used. An alternative goal, then ,
is to exercise each DD—path that can be exercised , at least once, and for
each DD—pa th that cannot be exercised , provide a detailed explanation of why
it cannot. Programs which have been tested Lo this level will  meet the
following cr iter ia:

• Each statement in the program will have been executed at least —

once.

• Each decision in the program will have been brought to each of its
possible outcomes at least once , although not necessarily in every
possible combination .

More stringent test goals include exercising each outcome of each decision in
a single tes t , exercising all possible levels of iteration , and exercising all
possible program flows (the last is in general not possible).

System—Wide Testing. For system—wide testing, the tes ting goal is a
straightforward extension of the single—module testing goal: to construct a
usefully small set of test cases which exercise as many DD—paths as possible ,
out of the aggregate set of DD—paths in all modules in the system . The
coverage measure may be an overall percen tage of DD—paths exercised , the
percen tage of DD—paths exercised in the least tested module , or the percen tage
of DD—paths exercised in the least tested subsystem of modules. A more stringent
test goal would measure coverage in relation to a module ’s location on the
invocation hierarchy. For examp le , any module which is referenced by more
than one other module might have its coverage separately determined for each
referencing module.

5.2.4 Testing Strategy

The previous subsect ions  have focused on defining the software test
object and collecting information about its structure , its operation , and the
effec ts of using an AVS in testing. This subsection presents a general
me thodology for testing a software system and gives guidelines for the

5—13



—.,- - - - . --
~

- ---

effective use of an AVS. Detailed information about the use of JAV S is con-
tained in Refs. 4 and 5. The major steps in testing with an AVS are :

1. Understand the functional requirements of the software system

2. Generalize the modes of behavior of the system

3. Define the system ’s hierarch ical str uc ture

4. Develop test plans keyed to the modes of behavior and the
sof tware structure

5. Execute functional tests

6. Develop structure—based tests for increased coverage —

System Behavior. Information about the software ’s functional require—
ments (i.e., the expected response of the system to inputs) is usually
contained in the system specification documentation and the program documentation .
Complex programs may have more than a single mode of behavior. For example , a
data base management system may have a primary , high—priority mode which handles
user commands interactively, and a secondary , background mode which generates -:
periodic reports on system usage. Other modes of system behavior may include
error processing or operation under degraded conditions (e.g., with an incomplete
or garbled data base). If there is more than one mode of expected behavior ,
each should be identified and named.

System Structure. Having defined the system ’s modes of behavior , an
attempt should be made to relate each mode to a hierarchical structure of the
program. There are several kinds of structure in a computer program : data
structure is the organization of the data on which the program operates; compu-
tation structure describes the program ’s operations on the data; and control
structure is the kind directly dealt with by the testing methodology . The
other kinds of structure are tested only insofar as they interact with the
control structure.

Large software systems are usually organized into subsystems , subsystems
into components , and components into modules. This static organization describes
the way the individual elements of the system depend on one another , wi thou t
regard to the way program control flows up and down. The dynamic organization
of a software system is the structure which results from considering the effects
of all invocations between modules , components , and subsystems . It is usually
called the invocation hierarchy of the software system. The testing methodology
deals with the dynamic organization. Normally program documentation will
identif y the static organization of software modules. The dynamic organiza tion
can be derived from more detailed documentation and verified by the AVS documen—
tation capabilities for showing intermodule dependencies.

For each named mode of behavior a software description should be developed
which identifies the modules invoked , the specif ied input domain of each module ,
and the expected system performance. Existing software documentation may not
c~~taln sufficien t information to document each behavior mode s e p a r a t e ly ,  it

5—14 

-~~~~~~~- --- ---~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~-~~~~~~~~~~~~ - --~~~~~~~~~~ - - -



may be necessary to execute some preliminary functional tests with the software
instrumented at the module invocation level to determine which modules are
invoked and under what conditions.

Test Plans. To minimize testing effort , tes t plans should be developed
which are keyed to the named modes of behavior and to software structure .
Each tes t plan should identif y one or more functional tests for initial
testing and the software structures to be tested. It is often the case that
more than one substructure of the software system will be exercised with a
given test case. This so—called collateral testing can greatly reduce the
overall testing effort. Each test plan should contain the following informa—
tion for each func t ional tes t:

• A name Identifying the test

• What function is tested

• The primary code structure tested

• Collateral code structures tested

• A description of the resources required

• The expected performance

• Criteria for evaluating the test

All of these items are commonly called for in test plans for software acceptance
t e s t s .7 Wherever appropriate , use should be made of existing func t iona l  tes ts
and test plans. The major distinction between testing with and without an AVS
is that with an AVS there is an orderly progression of tes ting from the initial
tests through well defined steps to achieve the desired testing coverage in
addition to satisfying the test criteria. Quite often, additional tes ts to
achieve increased coverage are derived from the initial functional tests.

Executing the Functional Tests. Before processing with an AVS , each of
the initial functional tests should be used to exercise the software and the
output should be evaluated against the test criteria. This is important for
two reasons :

• It provides a baseline set of output from the uninstrumented software
for later comparison to that from instrumented software .

• It demonstrates the ability of the test team to prepare test data ,
execute the program , and interpret results.

This step requires that the program be comple te , that source code he comp iled
error—free , and that test data result in acceptable execution (though not
necessarily expected behavior).

5—15



The next step is to execute each of the functional tests with instrumented
software and determine initial coverage. ~

This necessitates AVS processing to
build the library (BASIC and STRUCTURAL), instrument appropriate portions o’
the sof tware (INSTRUMENT),* compile and execute the instrumented software wi :h
the AVS probe routines (Test Executfon),* and obtain coverage reports (ANALY~ER).*
It is very important that normal program output from Test Execution be checked
against the baseline output. If discrepancies exist between the two, this is
direct evidence that the addition of instrumentation, in some way, has exposed
a software malfunction. Some of the reasons for this type of error are :

• The software test object is sensitive to t ime or space perturba-
tions (I.e., it is not suitable for AVS testing).

• The probe routines were improperly added (e.g., placed in the
wrong overlay link).

• The test data or test environment is different from that of the
baseline test.

• The computation process has caused the malfunction (e.g., using
the wrong COMPOOL to compile; inconsistent code generated by the
compiler).

• Computer resources are inadequate to process instrumented code
(e.g., compiler limitations regarding number of external symbols,
or memory capacity for expanded code).

The AVS capability for evaluating test effectiveness (ANALYZER) provides
a detailed and comprehensive analysis of testing coverage. Reports are
generated on execution tracing, module and path coverage, timing, and modules
and paths not exercised. For the initial functional tests this information
should be evaluated in some detail, since it represents the point of departure
for subsequent testing. Since the AVS only assists the test team in preparing
the software for Test Execution, the initial coverage results may not accurately
reflect actual coverage. For example, in JAVS the tester selects the placement
of a “beginning of test” signal and an “end of test” signal to the probe
routines, and they record coverage only during that interval of execution . Thus
the coverage reports are limited to code executed within this interval. Some
reasons for unexpected coverage results are:

• The functional test does not exercise the expected modules at all.

• The selection of test point placement is improper.

• The selection of modules to instrument is not compatible with the
functional test , perhaps indicating erroneous definition of system
structure .

If anomalous results occur at this point it is important to review decisions
made during the previous steps in the testing process before proceeding .

*JAVS processing keywords ; see Sec. 3.3.

5—16 

-~~- - -- --~~~~~~~~~~~ —-- ~~~~~~~~~ -- -~~
---- .“-

~~~~~~~~ _ -------

~~~~

- -



The next step is to execute each of the functional tests with instrumented
software and determine initial coverage. 

~
This necessitates AVS processing to

build the library (BASIC and STRUCTURAL), instrument appropriate portions of
the sof tware (INSTRUMENT) ,* compile and execute the instrumented software with
the AVS probe routines (Test Execution) ,~~~ and obtain coverage reports (ANALYZER) .*
It is very important that normal program output from Test Execution be checked
against the baseline output. If discrepancies exist between the two, this is
direct evidence that the addition of instrumentation , in some way, has exposed
a software malfunction. Some of the reasons for this type of error are:

• The software test object is sensitive to time or space perturba-
tions (i.e., it is not suitable for AVS testing).

• The probe routines were improperly added (e.g., placed in the
wrong overlay link).

• The test data or test environment is different from that of the
baseline test.

• The computation process has caused the malfunction (e.g., using
the wrong COMPOOL to compile; inconsistent code generated by the
compiler).

• Computer resources are inadequate to process instrumented code
(e.g., compiler limitations regarding number of external symbols ,
or memory capacity for expanded code).

The AVS capability for evaluating test effectiveness (ANALYZER) provides
a detailed and comprehensive analysis of testing coverage. Reports are
generated on execution tracing, module and path coverage, timing, and modules
and paths not exercised. For the initial functional tests this information
should be evaluated in some detail, since it represents the point of departure
for subsequent testing. Since the AVS only assists the test team in preparing
the software for Test Execution, the initial coverage results may not accurately
reflect actual coverage. For example, in JAVS the tester selects the placement
of a “beginning of test” signal and an “end of test” signal to the probe
routines , and they record coverage only during that interval of execution. Thus
the coverage reports are limited to code executed within this interval. Some
reasons for unexpected coverage results are:

• The functional test does not exercise the expected modules at all.

• The selection of test point placement is improper.

• The selection of modules to instrument is not compatible with the
functional test , perhaps indicating erroneous definition of system
structure .

If anomalous results occur at this point it is important to review decisions
made during the previous steps in the testing process before proceeding.

*JAVS processing keywords; see Sec. 3.3.

5—16



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- -

Structure—Based Testipg . Once the test team is confident of the quality
achieved in obtaining initial functional test results , tes ting proceeds with
AVS assistance as follows :

• Selecting a testing target from information in AVS coverage reports
for previous tests

• Constructing new tests to improve coverage using AVS retesting
assistance

• Performing Test Execution with new tests capturing software
behavior data

• Analyzing test results from AVS coverage reports

These steps are repeated until the test coverage objectives have been met.

Software testing can be performed at the single—module or system level.
At the single—module level , the retescing target is a set of DD—paths which
have not been exercised. At the system level, retesting involves identifica-
tion of target modules with low coverage and analysis of intermodule dependencies.
Single—module testing may be viewed as a part of system—wide testing.

In order to cons truc t new tes t cases , information about the control
structure of the module and its input domain is used. The relationship of the
module ’s input domain to the system input data must be determined in order to
test the module in its normal environment (i.e., its position in the invocation
structure of the software system). This may prove difficult , or no t even
possible , since communication paths to the module may be blocked (e.g., by
protective code or by lack of knowledge as in FMIS testing). If this is the
case , a special test environment may be needed to thoroughly exercise the
module.

Systematic Single—Module Testing

The testing process for single—module coverage has a single objective : to
construct test cases which cause execution of as yet unexecuted DD—paths
within the program . Testing is over when all DO—paths have been exercised or
when those which have not been exercised are shown by the program tester to be
logically unexecutable.

Two questions arise in addressing the task of single—module retesting:
what are the targets for retesting? and , once selec ted , what assistance is
available to exercise the targets?

The DD—path selection criteria should attemp t to maximize collateral
testing; i.e., to exercise more than one unexercised DD—path with each new
test case. Several guidelines can be used to aid the selection :

1. In a cluster of unexercised paths , choose an untested DD—path
that is on the highest possible control nesting level. (JAyS
statement and DO—path coverage reports print the nesting level ;

5—17

- --~~----- -~~~--~~~- - ~~~~~~~~ ----_ - -- -

see Fig. 4.3 or Fig. 4.12). This selection assures a high
degree of collateral testing, since some of the DD—paths leading
to and from the target must be executed.

2. A reaching set is a sequence of DD—paths which lead to a specified
DD—math. At user request , JAVS determines reaching sets to include
or exclude iteration . Choose a DD—path which is at the end of a
long reaching set as the target (see Fig. 4.7, statement 32).
In addition to collateral testing, it is likely that the resulting
test case input will be similar to data which resembles the functional
nature of the program.

3. If a prior test case carries the program near one of the untested
DD—paths, it may be more economical to determine how that test
case can be modified to execute the unexercised path. For example ,
JAVS post—test analysis reports (see ANALYZER,HIT and ANALYZER ,
DDPTRACE in Ref. 5) show which DO—paths were executed during each
separate test case.

4. If the analyses required for a particular DD—path selection are
difficult , then choose a path which lies along the lower—level
portions of its reaching set. This can simplify the analysis prob-
lem.

5. Analyze the untested DO—path predicate (conditional formula) in
the reaching set for “key” var iable names which may lead direc tly
to the input.

6. Choose PD—paths whose predicates evaluate functional boundaries or
extreme conditions ; exercising these paths frequently uncovers
program errors .

Most of these guidelines depend upon the identification of DD—path reaching
sets. One of the tasks performed by the JAVS testing assistance processor
(ASSIST) is the determination of these sets. The user input s the des ired pa th
number to be reached , and ASSIST generates the reaching set of paths from the
module entry or from a designated starting path to the spec ified path. For the
generated set of paths , the key program statements are printed , including the
necessary outcome of any conditional Statements which are essential. The user
may specify iterative or noniterative reaching sets to be generated.

The process of relating paths which are targets for retesting to the input
for generating new test cases is highly dependent upon the design of the test
program . JAV S shows what code segments have not been exercised by the data
(Figs. 4.2 and 4.11 — 4.13) and the program paths that lead up to any selected
DD—path target (Fig. 4.7). The tester must analyze the predicates in the
testing targets for important variables which may be described in program
comments or documentation . These variables can be traced throughout the pro-
gram by using the JAV S cross reference report (Fig. 4.8) and the module
interdependency (Fig. 4.10) and invocation parameter reports (if the variables
are passed as parameters) (Fig . 4.9).

5—18

—-~~
- - - — - - — --- —-—.--- - -

~~~~~~~~~~~

-

~~~~~~

- — - -

~~~~~~~~~~~

- - - -

~~~

- --

When the new set of test cases is generated , it can be added to the
previously input data or executed alone by the instrumented modules. The
results of this Test Execution are then processed by the post—test analyzer
to see if the coverage is satisfactory . At this time, the user may see
problems in the software which require code changes . The JAVS documentation
reports can be used to determine the effects that the code modification will
have within a single module or within the data base system of modules.

Systematic System—Wide Testing

The system testing effort can be organized according to two fundamentally
distinct strategies : (1) bottom—up system testing, and (2) top—down system
testing.

Bottom—Up Testing: This testing strategy attempts to provide comprehen-
sive system testing coverage by building test cases from the bottom of the
sys tem invocation hierarchy firs t , and extending these cest cases upward
during the continuing and concluding tes ting phases. Bottom—up testing may
require the use of special testing environments (see below), but is likely
to achieve the best overall testing coverage .

Top—Down Testing: This testing strategy deals with an entire software
sys tem firs t , and , after subsystem (or component) effectiveness is measured ,
proceeds downward through the software system ’s invocation structure. Test
case data is added only at the topmos t level and, as a resul t , a set of
system—wide test cases are developed directly .

The optimum system testing strategy for a particular system ~,enerall y
combines the two strategies. The choice is based on the level of coverage
achieved , the difficulty of proceeding upward or downward in the system
organization, and the effort required to establish a testing environment in
each case.

The basic ingredients of the systematic software system testing
methodology are the following:

• The abil ity to perform comprehensive single—module testing for
each invokable module

• Knowledge of the system ’s invocation structure

• Previous (and initial) system testing coverage measures

• A next—testing—target selection function -to allocate testing
e f f o r t

The general form of the system testing methodology is shown in Fig. 5.5 ,
which emphasizes continuous use of a system testing coverage measure . The
interac tion be tween the sys tem tes ting coverage meas ure and the process of
select ive application of the single—module testing methodology is described
next. The coverage value can also he used to select the best next testing
target.

5—19

~~_ - ~ - _ - -- ~~~~~~ - - ~~.- -

-

~~~~~~~~~~

ANALYZE EX I~~~~]-
~~~ TESTCASE

COVERAGE

~~~~~~~~S T E L 7 ~~~~~~~~~

J~~ TING
COVERAGE

SELECT LEAST 
MEASURE

TESTED ~~DU LE
SYSTEM
TESTING
TARGET

APPLY SINGLE- SELECTOR

ADD

Figure 5.5. Overview of System Testing Methodology

System—wide testing coverage can be measured in terms of the coverage for
each module , or in terms of the coverage for an identif iable subse t of
related modules (i.e., a component). The coverage measure can be used to select
the best next testing target.

The simple per—module coverage measure will direct testing effort toward
the module which is the least tested. The per—element form of composite testing
coverage allocates testing effort toward the component which has undergone the
least testing.

The measure actually used should depend on the internal structure , and
possibly the functional requirements , of the sof tware system as a whole. The
measure should unambiguously identify the module (s) least tested , but should
tend to identify a number of possible testing targets. The choice be tween
them should be made within the confines of the invocation hierarchy , and by
considering the two important variations of testing stategy : top—down testing,
and bottom—up testing.

Bottom-Up Testing

In bottom—up testing, a system tester has two choices: where to con-
cen trate the tes t ing effor t , and where to provide test case data.

1. Test case data can be supp lied through the existing data input
points. The system tester must be aware of data transformations

5—20

- - --

~

-

~

. 



performed prior to delivery to the module on which he is currently
working. These transformations may make it difficult , or impossible,
to exercise the current testing target .

2. The test case data can be supp lied through a separa te tes t ing
environment designed and implemented specifically to provide for
testing of a single system element. At the system testing level
the tes ting would be performed with the normal data input
mechanism.

The choice between these two mechanisms for providing test case data must be
based on the specific internal features of the software system.

The AVS interinodule dependencies and symbol cross reference capabilities
can be used along with module input and output information to select the
appropriate technique .

Figure 5.6 shows the use of a bottom—up strategy to select a testing
target. The selector emphasizes comprehensive testing of single modules
before components , components before subsystems, etc. The selection rule is
the following :

Bottom—Up resting Procedure. Begin the testing effort with modules
which are invoked at the end (i.e., the lowest level) of the invoca—
tion chain. Advance upward in the hierarchy only af.ter all terminal—
branch elements have been exercised comprehensively. The testing
target is always the least tested module that is furthest down in the
invocation hierarchy.

It may be necessary to accept less—than—full exercise of each module
as a reasonable testing strategy . This amounts to assigning a minimum
threshold of testedness for each module . Bottom—up testing will assure thit
all possible single—module testing will have occurred first; the technique
has a hi gh likelihood of transmitting this high level of exercise to the
topmost levels of the software system. Special testing environments may be
required along the way , however .

Top—Down Testing

For top—down system testing, the testing environment at each stage is
the obvious one: the topmost element of the software system will control
some data and will selectively pass it downward in the invocation structure
to the subsys tems , to the components , and, eventually , to individual modules.
New test case data is added at the points where the software system normally
accepts input data. These normal data input points are not necessarily
part of the topmost program; there may be special “da ta en try ” subsystems or
components which are invoked by the topmost program specifically for this
purpose.

5—21 

--~~--



-~ -~ - -~ —- --~ -- - ~~~~~~~~~~~~~~~~~~~~~ ~~~‘- - _ ~

ANALYZE
• • SINGLE

MODULE

UNIT TESTING

~ ANALYZE
COMPONENTS

- COMPONENT TESTING

} 

SUBSYSTEM TESTING

_________ 
ANAL YZE
SYSTEM

SYSTEM TESTING

Figure 5.6. System Testing Methodology (Bottom—Up)

5—22



Top—down testing is almost the reverse of bottom—up testing, and involves
selecting for further testing effort the largest elements of the system (i.e.,
modules which control entire subsystems or components) befcre attempting
testing of modules at the lower levels. The selection rule that corresponds
to this testing strategy is:

Top—Down Testing Procedure. Begin testing at the beginning of the
invocation structure (i.e., at the highest level). Advance downward
only after the highest—level modules have been comprehensively
exercised (to a preset threshold). The testing target selected is
always the least tested module which resides at the level in the
invocation hierarchy at which testing is currently proceeding.

This selector operates strictly in terms of the chain depth within the invo-
cation structure tree. It is generally undesirable to accept less than 100%
testing coverage at any stage of the process , however , since doing so may
mean that an important invocation chain is missed. That is, any invocation
chain which is the only one that permits testing some lower—level module
must not be skipped in the early levels of testing.

The top—down method generally assures maximum collateral testing
prior to attacking any particular lower—level module . Stubbing of system
elements may be necessary to conserve limi ted tes ting resources , however.

General Strategy

The best approach for systematically tes ting a large sof tware sys tem
will depend on the specifics of that system ’s elements; it is not possible
to state a universally applicable strategy . Mixtures of the top—down and 

-

bottom—up approaches may well cost the least, and may result in the greatest
testing coverage.

The results of a test activity depend to a large extent on the capability
and ingenuity of the test team. An AVS does offer tools, not prev iously
available, to make testing more effective . Application of those tools to
particular situations is the responsibility of the testers. There are ,
however, some guidelines for selecting the most appropriate AVS capab ili t ies
for particular situations. Some of these are described below .

Incomplete documentation. Use AVS resources to build the library
(BASIC and STRUCTURAL ) and obtain doc umentat ion repor ts on the
software (DOCUMENT). Construct missing documentation needed to
start testing.

Incomplete software. Use AVS resources to build the library (BASIC
and STRUCTURAL) and obtain documentation reports on the software
(DOCUMENT). To complete the test environment , firs t identif y top—level
modules and external library dependencies (Fig. 5.7). Next , construct
a test driver for each top—level module: use AVS module invocation
definition and cross reference for calling protocol and input domain .
Provide stubs (i.e., dummy modules) for externals which are referenced
but are not present on system or auxiliary libraries; use AVS module

5—23



LIBRA By DEF1~DE~ CL TABLE A UXTLIARY LI~~~A k1 DLI~tYtErCE TA3L t~~~
—

~~
- -

~~
-
~
. -

~~~~
-
~~

• ,1 4 4 •,I ~
.

•I.’ ~ SCDYIL~ +T,!~ .UCtI I t T T I t P SS+

• N.Y +LCEL~O4 + N.Y + L T O O O O O ~) O O C O ~~TQ ’
• v ,U •5~~~~I)A4 • w .O •~~~~ ? 2 1 ~~tTEt ~~tT~
+ 0 k +~~V~~5O~~+ • O.K •GN O125 O 1O~ G~. T+
• K;~~ f~ SJ~u + •
+ E~.E~cTLT + 4 E.E4 0
• ~~ R -i_

~~~ + 
—+ 

—
~~

-
.

_+ 

+ + 4 ~~•
+ ~,j.5TIC 4. IXX+ • SL.5I1L •~ I X~ X I~ X~ I ZX~ ’
• CC NV BT e + + CC 4V ?T +
‘ D! AL N7 • ~~~~~~~~~
+ FLTOUT 4 • + F L i C U T  • +
+ x~ro + x . • + Vf O ~~~~~~ 

-

• LO A S • • LOA D 
- 

4 

4 
_

~ _ _ _ 4

Figure 5.7. Tables Showing Interdependencies. These tables show relations
between all modules on the data base library and between library
modules and externals not on the data base library .

invocation references for calling protocol. Documentation supplied
with the software should be consulted for module interface specifi-
cations.

Single—Module Testing. Use unexercised DD—paths report (ANALYZER ,NOTHIT)
to identify potential test target paths. Use module listing (PRINT,
MODULE) or PD—path definitions report (PRINT, DDPATHS) to find nesting
level of unexercised paths. Use control flow picture (ASSIST, PICTURE)
for overview of module structure. Select testing target from reaching
set for target path (ASSIST, REACHING SET) to determine module inputs
which will cause target path to execute. Generate test data (see below).

5-24 



-- — — - - — - -
~

---- ,-- - - ----—-- —~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --~~~~~~~~~~~- - —~-- -_-

System—Wide Testing. Use module coverage summary and DD—path coverage
summary to identify potential test target modules. For any module
never invoked use inter—module dependencies (DOCUMENT) to determine
what modules invoke it directly, and indirectly through other modules.
Identify which higher—level modules were executed. Using cross—
reference reports together with intermodule dependence reports ,
identify what modules affect invocation. Modify test data to cause
invocation of target module. Several cycles of top—down testing may
be required if the unexercised inter—module control structure is at
all complex. Apply single—module testing techniques to increase intra—
module coverage.

Unknown behavior. Plant document probes (PROBD) to capture imbedded
description information in test execution trace. Examine test trace
report to identify behavior with probe location . Use results to select
appropriate test points.

Unexpected behavior. Use AVS assertion statements (e.g., JAVS execution
descriptions) to isolate causes. At the beginning of the module , insert
assertion statements for expected condition of module inputs. At the
end of. the module where control is returned , insert assertion statements
for expected conditions of module outputs. At intermediate locations
in the module, inser t asser tion statements for expec ted conditions of
module behavior. Examine Test Execution output for report of unexpected
behavior.

Testing Assessment

At the conclusion of the testing an assessment should be made of the
results. This summary should include the following:

• Documentation of the methods and extent of testing: strategy
for testing, coverage achieved, tes t cases used , dynamic
behavior modes tes ted , and identification of logically unreachable
code

• Determination of the consistency be tween the sof tware and its
func t ional specifications : what spec if ic func t ions are imp lemented ,
what unspecified func tions are implemented , what res tric t ions
not specified are embedded

• Evaluation of existing software documentation : errors , inconsis-
tencies with implemented software , miss ing informa t ion, supe r f luous
in forma t ion

There are several side benefits to be realized from testing. For
example, the sof tware can be opt imized by removal of unreachable code or code
which implements extraneous functions . AVS documentation reports are useful
here in determining the extent of changes to the 3oftware (e.g., modules and
data structures affected) and the amount of retesting necessary after software
modifica tions have been made .

5—25

_  ~~~~~~~- ----- ~~- - ~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~ - - -



6 ADVANCED AVS CAPABILITIES

Prior to the availability of Automated Verification Systems , sof tware
developers of necessity relied on extensive manual testing to demonstrate
software performance. The information about software characteristics was
also largely manually composed , supplemented by meage r repor ts genera ted as
side products from compilers , loaders , and other system software . With access
to an AVS with current capabilities such as JAVS or RXVP , the situat ion
changes dramatically: software developers can expect to test software sys-
tematically with support from specially designed test tools, to document
software automatically at various stages in its development , and to build
in quality during development by utilizing AVS features which perform both
static and dynamic tests of software quality. Testing experience with JAVS
(see Sec. 4) has demonstrated some direct benefits of using an AVS on existing
sof tware , not only in achieving comprehensive software testing but also in
generatIng high—quality , accurate software documentation . The ind irect
benefits of these tests included illumination of software properties which
are difficult to tes t, and identification of extraneous code and unused data
structures .

More advanced Automated Verification Systems can be expected not only
to automate additional test, documentation, and quality—checking services for
existing software but also to improve the quality of new software by other
mechanisms such as tool—supported language extensions. To achieve full
benefit from the availability of an AVS , new software should be designed with
the use of the AVS as one of the considerations. Maintenance and testing activ—
ities provIde opportunities to insert in existing software additional informa-
tion analyzed by an AVS (e.g., assertion statements on program performance).

This section presents a forecast of the capabilities offered by an
advanced Automated Verification System. Current AVS capabilities emphasize
the testing of existing software ; future AVS capabilities will include tools
for analyzing both existing software and new software which is designed to
exploit the AVS . Furthermore , developments in languages , system software,
app lication sof tware , and hardware design which are independent of AVS con-
siderations will most certainly influence the direction of advanced AVS
development.

6.1 CURRENT AVS II’IPLEMENTATION

Today ’s AVS is applicable to today ’s software. The typical software
system subjected to an AVS (1) already exists , (2) is implemented in a
popular procedural language such as FORTRAN , JOVIAL , or PASCAL , (3) most
likely was not developed with top—down , bottom—up, or structured programming
development techniques , (4) is not well documented for ease in testing and
maintenance , and (5) was not designed to exploit AVS capabilities. The
currently operational AVS is an experimental tool, incorporates state—of—the—
ar t analysis techniques , operates independen tly of other software tools
(e.g., comp ilers) , and is not yet a primary tool in the software development
cycle as are compilers , linkage editors , and operating systems .

6—1

~

-- -



-- - - - — ,--~~~~~~~~- - - -— ----

So far, the use of the AVS has been limited and experimental. The objec-
tives of the current effort are primarily concerned with gaining experience in
using the AVS, developing techniques for using it effec tively , measuring its
performance, and establishing the extent of its applicability to current
systems. The limited testing experience described in Sec. 4 utilized only
a part of the JAVS capabilities. None of the software test objects was
designed to use an AVS in testing; furthermore none was implemented with
language extensions (i.e., executable assertions) or with the aid of documen-
tation tools provided by JAyS. In addition , the test teams were largely
inexperienced in using an AVS , although they included individuals who had
developed several AVSs. In spite of this , the effectiveness of .JAVS in
testing and documenting both large and small software systems was demon—
strated. For example, the high statemen t coverage req uired in the JAVS
software acceptance tests was quickly accomplished and certified with AVS
support for instrumentation and test coverage analysis. To do the same
task manually on the JAVS software would be impractical.

In documenting the JAVS software, the task of producing the required
documentation , to the level of detail called for , was greatly simplified by
using the AVS to produce all the structural information . Only the descrip—
tive semantic and organizational details were manually prepared.

6.2 FUTURE AVS CAPABILITIES

Compared to today ’s AVS, tomorrow’s AVS will be a far more ef fec tive
tool for the software developer. It will offer exapnded capabilities and
will be easy to use and cost—effective. The developer will design and
implement software to take advantage of the AVS , in much the same way
that current software is designed and implemented to take advantage of
current tools: high—level compilers, system loaders , libraries , text
maintenance tools, and operating system p~ocessors. Existing languages
will be extended and new languages developed to improve software quality.
Some of the~ e language features will supply additional info rmation for
analysis by the AVS together with the (essential) procedural information .

In the following subsections , the capabilities to be found in advanced
AVS tools are described. They fall into two main categories: ;~ atic tools ,
which analyze the properties of the software without executing it , and
dynamic tools, which are associated with executing the software . ~Jhere
appropriate , current AVS capabilities are indicated , as art those which
depend on language extensions.

6.2.1 Static Tools

Static AVS tools analyze software for its static properties , i.e.,
without executing the software . Some tools are concerned with a small
part (e.g., modules) of the software system while other analyze subsystems
(e.g., functionally related sets of modules) or even the entire software
system. They provide such services as:

6—2 

-- - --~~~~~~~
-- -- ~~~~~~~-~~~~~~~~~ -- - - ~~~~~~~~~~~~ - - - -~~~~~~~



• Syntactic Documentation

• Coding Standards Checking

• Control Structure Analysis

• Consistency Checkit~g

• Program Proof of Correctness

Syntactic Documentation. Comprehensive syntactic documentation of sof t—
ware systems is essential to software and testing maintenance. The most common
forms are source listings, symbol tables , and cross—reference lists. Typically
AVS tools enhance the software source listings with automatic control—structure
indentation and nesting—level indicators. Symbol tables identif y symbols used
and symbol specifications (e.g., type, precision , dimensions, scope). Cross—
reference lists identify where (e.g., by module or by statement) and how (e.g.,
declared, set, used, invoked) symbols are referenced.

Since some compilers operate on separate compilation units (e.g., the GCOS
JOCIT JOVIAL compiler accepts only a single START—TERN sequence), it is not pos-
sible to obtain a cross—reference listing over a selected set of modules directly
from the compiler. An AVS with access to the complete source text of the soft-
ware generates this information readily . The designated set of modules may be the
complete software system , a functionally related subsystem, those modules resident
in a single memory load, those on the same chain in an invocation hierarchy , or
other suitable combinations.

In addition to he above, current AVS tools offer more extensive reports
such as:

• Explicit module invocation matrix, showing direct invocation of
each module to all other modules, whether or not known to the
AVS

• Inter—module invocation tree, showing each module ’s posit ion in
the invocation hierarchy

• Module invocation environment , showing the local invocation
hierarchy of the designated module (i.e., other modules which
call the designated module or are called by it, both directly
and indirec tly, for a spec ffied number of levels)

• Module invocation source text , showing formal invocation declara-
tion of the designated module , all actual invocations of the
designated module known to the AVS , and all invocations from the
designated module .

Examples of these reports are contained in Ref. 5.

6—3

- - :~~~
-
~~~i~~~: ~~—- —-  - — -  -~~ - --


I

The recent experience with AVS applications has indicated other useful
syntactic documentations attainable with existing technology :

• Explici t and implicit module invocation matrix , showing both
direct and (possible) indirect invocation of each module to
other modules , whether or not known to the AVS .

• Scope data definition structure , showing scope hierarchy data
definition (e.g., as determined by module nesting structure).

• Symbol reference matrix , showing symbols explicitly referenced
by module.

• Symbol access matrix , showing accessibility of each symbol to
modules and indicating those symbols which are (1) explicitly
referenced and (2) implicitly accessed through actual invocation
parameter lists (i.e., the module communication space).

• Symbol control struc ture reference matrix , showing symbols
explicitly referenced in control statements (e.g., IF, GOTO ,
SWITCH) .

- File symbols reference matrix, showing I/O interfaces.

• Symbol file data transfers , showing symbols referenced in I/O
data transfers.

• Symbol— to—symbol relationships , showing symbols directly related
to anothev (e.g., by data structure definition such as table
membership or overlay , or by usage in some executable statement).

Although none of the above actually requires extensions to the language , some
mechanism to designate a module ’s membership in one or more selec ted sets
would simplify the use of the AVS. (Current AVS tools such as JAVS provide
for selecting a list of modules by name from the known modules under user
command.)

Coding Standards Checking. The enforcement of coding standards is largely
a preventive measure used to avoid problems of ten associa ted wi th poor language
usage. Standards checkers analyze code for conformance and identify offending
statements. Standards usually are imposed on module size (number of executable
statements), permitted language constructs (language subset), comments (all
control statements preceded by descriptive commentary), and symbol naming
conventions (all modules have long names, mnemonic data symbols , increas ing
sequential order for statement labels). A common technique for enforcing
standards is to use a standards checker as a preprocessor to the compiler
and prevent nonconforming modules from being compiled. With an AVS , however ,
standards checking can be integrated along with other static analysis tools ,
such as those described below.

6—4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-

Control Structure Analysis. The identification of the control structure
embodied in software is necessary to other AVS functions . Structural analysis
determines the possible program control flow by identifying the sequential code
segments which define decision—to—decision paths (DD—paths) within each module
and by locating all inter—module invocations and control transfuts . This
information is the basis of static analysis of intermodule structures , testing
coverage analysis and assistance , data flow analysis , and other analyses which
require knowledge about program flow. As part of its function , the structural
analysis processor (currently part of AVS tools) includes checks on the control
structure of the software such as identification of:

• Structurally non— terminating module

• Structurally unreachable code

• Direct transfers into a deeper or alternate control nesting level
(“borrowed code”)

• Direct out—of—module transfers within the module invocation
hierarchy (“escape” path)

• Direct out—of—module transfers to another chain in the module
invocation hierarchy (“threaded” path)

• Circular module invocation (recursion)

These constructs , although permitted in the language , may nit (or cannot) be
detected by normal compiler operation . Other structural services currently
provided in existing AVS impiementations~

40’11 include :

• Reaching set and reaching sequence analysis for a specified target
statement or path.

• Program restructuring to a standard form (i.e., single—entry
single—exit structured modules).

Curren t AVS structural analysis is based on algorithms for non—recursive ,
non—concurrent software written in conventional procedural languages. Advanced
AVS struc tural analysis must cope with recursion (JOVIAL/J73), concurrency
(Concurrent PASCAL), and advanced control structures which support new language
features such as software fault tolerance (see Sec. 6.2.2), escape mechanisms,
and co—routines.

Consistency Checking. Although most languages require software to be
internally consistent , many compilers do not (or cannot) check for consistency.
Currently an AVS with access to the entire software source code can perform
valuable checks for consistency such as:

• Agreement between actual and formal parameter lists for number of
arguments and argument specifications

• Consistent use of syntactic types (e.g., no implied type conver-
sion , legal operations , proper number of subscripts)

6—5



structures). It is generally accepted that simplif ication by the application
of a set of rules is the best approach to take. With the current state of the
art , interactive verification condition generation and simplification appears
to be most promising .1

6.2.2 Dynamic Tools

Dynamic AVS tools support the analysis of execution characteristics of a
program (i.e., the dynamic properties of program behavior). There are two
general categories of dynamic tools: those which are concerned with testing
software and those which support software fault tolerance.

Testing. Current AVS implementations have emphasized the testing of
software to achieve higher quality. There is a wide variety of testing
analys 4.s tools which can be used on existing software such as:

• Control structure instrumentation which records the dynamic flow
of program control through insert ion of probes

• Coverage analysis which reports the program paths exercised (or
not exercised) during testing in varying levels of detail

• Performance analysis which reports timing of modules.

Executable assertions about program behavior may also be inserted in
existing software . These result in instrumentation probes which report
violations of the assertions during test execution .

Advanced AVS implementations will offer not only extensions of these
types of analysis but also tools which support test environment generation
and test history maintenance. Dynamic consistency checking is one type of
expanded analysis capability which can be used to expose errors not found with
static consistency checks. These dynamic checks include detection of violations
of:

• Subscript limitations

• Declared variable ranges

• Timing constraints

• Set—before—use and use—after—set practices

An important capability for advanced AVS implementa tion is automated tes t
environment generation. With current AVS capabilities the tester must construc t
r h. test environment manually . He assembles the code to be tested from instru—
mented and uninstrumented modules , somet imes producing  new s o f t w a r e  f o r  t e s t
fri - ie r - and module stubs to make a comp lete program . Test data is also
mri ’~ .11 v prepared. He may use r.~ports from the AVS to identify what modules
i r.  n,- , - ~sarv , wha t in ter faces  must be supp lied , and what variables are directly 

t 4 - t hv  t e s t  data inputs.

6—7



p 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In this respect the AVS is a passive participant in the testing activity.
A more active role for the AVS in automated test driver and stub genera tion
and test data generation is certainly desirable. For example, data flow
analysis coupled with use of module input and output declarations and entry
and exit assertions can provide the basis for automated test environment
support. For a target module, a test driver can be constructed which contains
a synthesis of the module ’s communication space , module invoca tions , and code
to initialize input data; stubs for other modules invoked by the target module
can be similarly constructed. The tester then supplies the required data.
Entry assertions verify the data: exit assertions verify the test results. r 4

Sys tematic sof tware tes ting of ten requires keep ing caref ul records of
the testing history of software systems : what tes ts were done , what test
data was used , what was accomplished. This information is used as a test
management device to select test strategies which minimize the amount of
additional testing. If the software is modified , previous test records can
be used to select test data and software configurations for retesting activities.
Current AVS implementations permit the tester to identify each test , but the
AVS makes no direct use of the information. Record keeping is largely a
clerical process , and, if manually done , it is prone to error. Although
automated test history maintenance can involve retention of large quantities
of information (e.g., detailed coverage data) , some automated mechanism for
identifying, extrac ting, and retaining essential data is desirable for advanced
AVS implementation .

Software Fault Tolerance. Anoiner approach to improving software quality
is to provide a mect~anism whereby software can continue to function properly
although some failure (hardware, software , or bad data) has occurred. Fault
tolerance attempts to increase the reliability of a system through dynamic
redundancy . A fault tolerant software system requires redundant software or
hardware in order to:

1. Detect faults before major damage occurs

2. Diagnose faults so repair may be performed

3. Recover from faults by re—establishing an acceptable system state.

Correctness proofs assume that no hardware faults will occur and that only

~pecified data inputs will be processed. For this reason “correct ” systems
nay not be reliable systems. Fauit tolerance techniques assume that hardware
faults will occur , data input specifications will be violated , and sof tware
errors are inevitable . A variety of approcches for attaining fault tolerance
in sof tware are currently being inves tigated.12 All use various combinations
of software and/or hardware for support. This has s t rong implica tions for the
role of AVS in testing: some mechanism must be provided to simulate faults
in order to test error detection , repair , and recove ry functions .

6.2.3 New AVS Requirements

There are a number of ongoing developments in the computer arena which
impact the requirements for AVS capabilities. Among these are

• New software languages and software designs (e.g., to suppor t
concurrency, fault tolerance , restricted data access).

• Non—conventional hardware arch~ tectures (e.g., tagged architecture ,
distributed data processing).

• System software which supports new developments in hardware and
application software.

All of these factors will impose new requirements on AVS facilities.

Current ATS implementations have been designed for a stable environment
of rather conventional characteristics: e.g., a large host computer , with
ample auxiliary storage for a substantial data base , and a computer operating
system supporting large program applications . This has been an adequate
assumption for experimental AVS usage . The need for AVS adaptation to more
restricted host environments (e.g., to mini—computers) has now become evident.
This impacts the design of AVS software itself. For example , in more restrictive
environments, each AVS tool could be separately implemented fur the most
efficient use of computer resources.

Many AVS functions closely parallel those of current compilers : for
example syntactic source analysis . An AVS developed independently of a
compiler does offer an independent check on these functions . This, howeve r ,
is also a drawback since erroneous conflicts in interpretations of source
text between the AVS and the compiler are a source of difficulty in AVS
usage. It is not at all unreasonable to expect advanced AVS imp lementations
to make use of compiler source text analysis functions in constructing portions
of the database. This can be accomplished by requiring the compiler to retain
the information in an acceptable form for input to an AVS.

6—9

APPENDIX A

GLOSSARY OF AVS TERMINOLOGY

A- 1

- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -- -
~~

•---
~~

- - -  — — —
~~~~~~~~

--- ------ - ---- -—-~~~~~~~~~~~~~~~~~~~

AVS. Automated Verification System .

AVS Database. In an AVS , the collec tion of informat ion maintained internal to
to the AVS and which contains all pertinent data about all modules known
to the AVS.

Actual Parameter. In an invocation of a module , the set of variable names
passed to the invoked module in the actual parameter list.

Automated Verification System. A system for the analysis of sof tware sys tems
oriented toward sys temat ic , comprehensive testing (exercise) as a means
to perform software verification . JAVS is an example of such a system.

Bottom—up Testing Strategy. A sys tema tic tes t ing philosophy wh ich seeks to
test those modules at the bottom of the invocation structure earliest.

Collateral Testing. Collateral testing is that testing coverage which is
achieved indirectly, rather than as the direct object of a testcase
activity.

Communication Space. The communication space of a module consists of those
symbols , known within the module , by wh ich information can be passed to
or from the module. Communication space mechanisms consist of formal
parameters , global variables , and return parameters .

Computation Directive Instrumentation . The process of produc ing an altered
version of a module as the result of user—inserted directives which is
logically equivalent to the unmodified module , but which contains
executable code that provides for collecting information about the
dynamic behavior of the module during its execution .

Computation Structure . The operation of the program on the data.

Control Level. (Control nesting level.) The control structure of a program
is hierarchical. A t the module ’s en t ry , the control level is 0. Each
new DD—path or beginning of a BEGIN—END block increases the control
level; the end of each DD—path or BEGIN—END block decreases the control
level.

Control Structure . The set of program statements which alter the normal
sequential flow from one statement to the next.

Data Structure . Organization of the data on which the program operates.

DD—Path . A 1)1)—path , or decision—to—decision path , is the set of statements in
a module which are executed as the result of the evaluation of some
pred ica te (cond i t i ona l) w i t h i n t h e m o d u l e . The D D — p a t h should he thou cli t
of as including the sensing of the outcome of a conditional operation
and the subsequent executions up to , and including, the c o mp u t a t i o n of
the next predic~i te value but not including its evaluation .

A- 2

- ‘ ~~~~~~~~~~~~~—- ---p --~~~-- -- ~~~
— - --

~~~~~
--— .-- -

~~ - - -  - - - —* -~~~~~~~~~~~~



-~~~~~~~~~~~~~~~ - - - -~~~~ --~~~~~~~~~~-~~~~~~~~ -~~~~~~~ --~~

DD—Path Instrumentation . The process of producing an altered vers ion of a
module which is logically equivalent to the unmodified module but
which contains calls to a special data collection subroutine which
accepts information as to the specific DD—path sequence incurred in an
invocation of the module.

DD—Path Predicate. A logical formula involving variables/constants known to
a module and, possibly, the values .TRUE. and .FALSE. , wh ich mus t be
satisfied for the DD—path to be executed .

Decision Statement. A decision statement in a module is one in which an
evaluation of some predicate is made which (potentially) affects the
subsequent execution behavior of the module .

Decision—to—Decision Path. See DD—path.

Directive . A user—supplied statement imbedded in the source text which directs
the AVS to perform a specified function .

Essential DD—path. A DD—path in a reaching set which must be executed in
order to reach the designated DD—path .

Executable Statement . A statement in a module which is executable in the
sense that it produces object code instructions.

External Label. See global label.

Flow. A particular sequence of DD—paths .

Formal Parameter. For an invokable element of program text , the set of
variable names which are assigned value outside of the program text .

Functional Specifications. A se t of behav ior and perfor mance requi rement s
which , in aggrega te , determine the functional proper ties of a sof twa re
system. :1

Functional Test Cases. A set of test case datasets for software which are
derived for testing specific tasks or functions.

Global Label . A statement label residing in one module but which is trans-
ferred to from other modules.

Global Var iable . In a module , a global variable is one which may receive a
value as the result of actions outside the module.

Input Domain. See input space.

Inpu t Space. The lnput space of a module consists of that subset of a
modul e ’s communication space which can be (1) altered externall y to
the modu le , and (2) which is (potentially) used within the n o d ul e  in a
way that affects its execution .

A- 3



Instrumentation . The automatic insertion of software probes (e.g., invocations
to data collection routines) to capture information during execution .

Intermodule Dependencies. Generally refers to module interaction via invoca-
tions but can also include interaction due to external label transfers.

Invocation Point. The invocation point of a module is the firs~ statement in
the module (in JOVIAL , a program, procedure , or close), or, if the
module has multiple entry points , an entry statement.

Invocation Structure. The hierachy of invocations of one module by another
within a software system.

Iterative Flow. Iterative flow is represented by a sequence of DD—paths with
the property that some DD—path belonging to the sequence can be
executed one or more times.

JOCIT JOVIAL. (JOVIAL Compiler Implementation Tool). A dialect of JOVIAL/J3.

JOVIAL. Unless further specified , any of the dialects of the family of
JOVIAL languages.

JOVIAL/J3. The JOVIAL programming language , J3 subset , as defined in Air
Force Manual AFM—lOO—24.

Memory. A module is said to have memory if there is some interior code condi-
tion which makes it possible to execute some DD—path only by making two
or more invocations of the module .

Memory Space. The memory space for a module consists of those cells known
to the module which allow it to have memory (see Memory).

Module. A module is a separately invokable element of a software system.

Non—Executable Statement. A declaration or directive within a module wh ich
does not produce (during compilation) object code instructions directly .

Output Space. The output space of a module consists of the collection of
variables, including file actions , which are (or could be) modified by
some invocation of the module .

Path. A sequence of DD—paths.

Predicate. A formula involving variables/constants and relational operators ,
which can be evaluated to .TRUE. or .FALSE..

Program Validation . The process of developing and verifying the correspondence
between an implemented software system and the set of functional speci-
fications which correspond to it.

A-4

4 ~~~— - ~~
_ .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-


~~~~~~~~~

--

~~~~~~~

-

~~

---.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Program Verification . The process of verifying that a set of functional test
cases meets structural testing goals.

Reaching Set. The set of all DD—paths that connect together to form paths
from one designated DD—path to another.

Software System. A collection of modules , possibly organized into components
and subsys tems , which solves some problem.

Software Validation . See Program Validation.

Structural Instrumentation. Instrumentation of module invocation entries ,
exits and DD—paths without changing the logic of the uninstrumented
source code.

Structural Test Cases. A set of test case patterns , der ived from the con trol
structure of a module (or a collection of modules). The combination of
a struc tural tes t case and appropriate program input data results in a
functional test case.

Test. A test is one or more unit tests of one or more modules.

Test Case. See Test.

Test Case Dataset. A test case dataset is a specific set of values for
variables in the communica t ion space of a module which are used in a
test.

Testing Coverage Measure . A measure of the testing coverage achieved as the
result of one unit test , usually expressed as a percen tage of the number
of DD—paths within a module which were traversed in the test.

Test Execution. Execution of the test object in which one or more modules of
the test object have been instrumented. Output differs from normal
execution output in that information captured from the instrumented code
is written to a sequential file for later analysis.

Test Object. The software to be tested.

Testing Stub . A testing stub is a module woici~ simulates the operations of a
module which is invoked within a test. The testing stub can replace the
real module for testing purposes.

Testing Target. The current module (system testing) or the current DD—patls
(unit testing) upon which testing effort is focused.

Testing Verification . See program verification .

Top—down Testing Strategy . A systematic testing ph i losop hy which seeks to tc~~t
those modules it the top of the invocat ion structure earlh-~-It .

A-S 



~~~~~

Unit Test. A unit test of a single module consists of (1) a collection of
settings for the input space of the module , and (2) exactly one
invocation of the module . A unit test may or may not include the
effect of other modules which are invoked by the module undergoing

4testing.

Unreachability. A statement (or DD—path) Is unreachable if there is no
logically obtainable set of input—space settings which can cause the
statement (or DD—path) to be traversed.

A-6

—- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

- - ---—- -- --

REFERENCES

1. Revised Statement of Work for Automated Verification System, PR B— 3—3209,
Rome Air Development Center , Griffiss Air Force Base, New York , Apr il
16, 1973.

2. E. F. Miller , Jr., Methodology for Comprehensive Software Testing,
General Research Corporation CR—l—465, June 1975. Available as
RADC—TR—75—161, Interim Report , June 1975 at Rome Air Development
Center, Griffiss Air Force Base, New York.

3. Standard Computer Programming Language for Air Force Command and Control
Systems, Department of the Air Force AFM 100—24, June 15, 1967.

4. C. Gannon, N. B. Brooks, R. J. Urban, JAVS Technical Report: RADC—TR—77-l26 ,
Volume I, “User ’s Guide ,” General Research Corporation CR—l—722 , April 1977 .

5. C. Gannon, N. B. Brooks, JAVS Technical Report: RADC-TR-77—126, Volume II,
“Reference Manual ,” General Research Corpora tion CR—l—722 , Apr il 1977.

6. Statement of Work for JAVS Implementation, PR B—6—3282, Rome Air
Development Center , Griffiss Air Force Base, New York , October 8, 1975.

7. C. Gannon, JAVS Acceptance Tests for RADC, General Research Corporation
IM—1998, October 1975.

8. N. B. Brooks, E. F. Miller, Jr., W. R. Wisehart , JAVS Final Report,
General Research Corporation CR—4—465 , December 1975.

9. N. B. Brooks, C. Cannon, JAVS Final Report, General Research Corporation
CR—3—722, February 1977.

10. RXVP, FORTRAN Automated Verification System, Level 1, Reference Manual,
General Research Corporation, May 1975.

11. R. J. Urban, L. W. Hambly, Extensible Automated Verification System
(EAVS), Reference Manual, General Research Corporation CR—2—725 ,
February 1977.

12. Advanced Quality Assurance Research Plan, General Research Corporation
CR—4—720 (in preparation).

13. N. B. Brooks, Test Plan and Procedures for JOVIAL Automated Verification
System (JAVS), General Research Corporation CR—2—465 , July 3, 1975.

R-1

~~~~~~~~~~~~ - - ~~~~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -~~~~~ -~~~~~~~- —--~~~~~ 

- - -



METRIC SYSTEM - -

BASE UNITS: 4
Unit si ~yrnbol Formula

length metre m
mass kilogram kg - -
time second s - - -
electric current ampere A - -
thermodynamic temperature kelvin K -
amount of substance mole mol -
luminous intensity candela cd

SUPPLEMENTARY UNITS:
plane angle radian red - -
solid angle steradian at - - :~

DERIV ED UNITS:
Acceleration metre per second squared - - - m’s
activity (of a radio active aourcel disintegration per second - - - (dis integration Is

angu lar acceleration radian per second squared - - - radii
angular velocity radian per second - - -  radii ‘

~
area square metre - - - - m
density kilogram per cubic met re - -- kg/rn
electnc capacitance farad F A.a/V
electrical condu :tance Siemens S AN
electric field strength volt per metre - - V/m
electric inductance henry H V.s/A
electric potential difference volt V W/A
electric resistance ohm V/A
elec tromo tive for ce volt V W/A
energy joule I N.m
entropy jou le per kelvin I/K
force newton N kg.m/a
frequency hertz Hz (cycle)ls
illuminence lux lx lrn/m
luminance candela per square metre - -  - cd/rn
luminous flux lumen Im cd.sr
magnetic field strength ampere per metre - - - A/rn
magnetic flux weber Wb V.s
magnetic flux density tesla T Wb/m
magnetomotive force ampere A - - -
power watt W J/s
pressure pascal Pa N/rn
quantity of electricity coulomb C A..
quantity of heat joule J N.m
radiant intensity watt per steradi an - - -  W/s r
specific heat joule per kilogram-kelvin - -  Jfkg .l (
st ress pascal Pa N/rn
thermal conductivi ty watt per metr e.kelv in - -  - W/m.K
velocity metre per second mis
viscosity, dynamic pascal-second Pa.s
viscosity, kinematic square met re per second - - - rn/s
vo ltage volt V W/A
volume cubic metre - - m
wavenumber reciprocal metre - (wave)/m
work joule I N.m

SI PREF~~ ES:

- 
Multipli ation Factors Prefi x Si Sym tsil

1 000 000 (/00 000 = lO 1~ titra
00(1 000 000 10’ giga

1 000 000 1(1’ mege M
1 000 10’ kI lo k

100 10~ h,~cto
10~~ 10’ d,~ka da

0. 1 1( 1— ’ clecl d
001 = 10 ’  centI~ C:

0 001 = 10” mil li m
0 000 001 = 10’~ micro

0 000 000 001 = 10’ nano n
0 000 000 000 001 = 10= ” pu_o p

0.000 000 000 000 001 = 10 ‘‘ bmW
0.00(/ 000 000 000 (100 001 10 ”  at t n a

To be avoided where possible

- - -  -~~~~—--— --- ---- ---- — ---- ~~~~~~~ - -~~~~ --—-- -



MISSION
qi

Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the C3 areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, int&ligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility . 

—~~- - ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- p


